1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
// ================================================================= // // * WARNING * // // This file is generated! // // Changes made to this file will be overwritten. If changes are // required to the generated code, the service_crategen project // must be updated to generate the changes. // // ================================================================= use std::error::Error; use std::fmt; #[allow(warnings)] use futures::future; use futures::Future; use rusoto_core::credential::ProvideAwsCredentials; use rusoto_core::region; use rusoto_core::request::{BufferedHttpResponse, DispatchSignedRequest}; use rusoto_core::{Client, RusotoError, RusotoFuture}; use rusoto_core::proto; use rusoto_core::signature::SignedRequest; use serde_json; /// <p>Represents an option to be shown on the client platform (Facebook, Slack, etc.)</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct Button { /// <p>Text that is visible to the user on the button.</p> #[serde(rename = "text")] pub text: String, /// <p>The value sent to Amazon Lex when a user chooses the button. For example, consider button text "NYC." When the user chooses the button, the value sent can be "New York City."</p> #[serde(rename = "value")] pub value: String, } /// <p>Represents an option rendered to the user when a prompt is shown. It could be an image, a button, a link, or text. </p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct GenericAttachment { /// <p>The URL of an attachment to the response card.</p> #[serde(rename = "attachmentLinkUrl")] #[serde(skip_serializing_if = "Option::is_none")] pub attachment_link_url: Option<String>, /// <p>The list of options to show to the user.</p> #[serde(rename = "buttons")] #[serde(skip_serializing_if = "Option::is_none")] pub buttons: Option<Vec<Button>>, /// <p>The URL of an image that is displayed to the user.</p> #[serde(rename = "imageUrl")] #[serde(skip_serializing_if = "Option::is_none")] pub image_url: Option<String>, /// <p>The subtitle shown below the title.</p> #[serde(rename = "subTitle")] #[serde(skip_serializing_if = "Option::is_none")] pub sub_title: Option<String>, /// <p>The title of the option.</p> #[serde(rename = "title")] #[serde(skip_serializing_if = "Option::is_none")] pub title: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct PostContentRequest { /// <p><p> You pass this value as the <code>Accept</code> HTTP header. </p> <p> The message Amazon Lex returns in the response can be either text or speech based on the <code>Accept</code> HTTP header value in the request. </p> <ul> <li> <p> If the value is <code>text/plain; charset=utf-8</code>, Amazon Lex returns text in the response. </p> </li> <li> <p> If the value begins with <code>audio/</code>, Amazon Lex returns speech in the response. Amazon Lex uses Amazon Polly to generate the speech (using the configuration you specified in the <code>Accept</code> header). For example, if you specify <code>audio/mpeg</code> as the value, Amazon Lex returns speech in the MPEG format.</p> <p>The following are the accepted values:</p> <ul> <li> <p>audio/mpeg</p> </li> <li> <p>audio/ogg</p> </li> <li> <p>audio/pcm</p> </li> <li> <p>text/plain; charset=utf-8</p> </li> <li> <p>audio/* (defaults to mpeg)</p> </li> </ul> </li> </ul></p> #[serde(rename = "accept")] #[serde(skip_serializing_if = "Option::is_none")] pub accept: Option<String>, /// <p>Alias of the Amazon Lex bot.</p> #[serde(rename = "botAlias")] pub bot_alias: String, /// <p>Name of the Amazon Lex bot.</p> #[serde(rename = "botName")] pub bot_name: String, /// <p><p> You pass this value as the <code>Content-Type</code> HTTP header. </p> <p> Indicates the audio format or text. The header value must start with one of the following prefixes: </p> <ul> <li> <p>PCM format, audio data must be in little-endian byte order.</p> <ul> <li> <p>audio/l16; rate=16000; channels=1</p> </li> <li> <p>audio/x-l16; sample-rate=16000; channel-count=1</p> </li> <li> <p>audio/lpcm; sample-rate=8000; sample-size-bits=16; channel-count=1; is-big-endian=false </p> </li> </ul> </li> <li> <p>Opus format</p> <ul> <li> <p>audio/x-cbr-opus-with-preamble; preamble-size=0; bit-rate=256000; frame-size-milliseconds=4</p> </li> </ul> </li> <li> <p>Text format</p> <ul> <li> <p>text/plain; charset=utf-8</p> </li> </ul> </li> </ul></p> #[serde(rename = "contentType")] pub content_type: String, /// <p> User input in PCM or Opus audio format or text format as described in the <code>Content-Type</code> HTTP header. </p> <p>You can stream audio data to Amazon Lex or you can create a local buffer that captures all of the audio data before sending. In general, you get better performance if you stream audio data rather than buffering the data locally.</p> #[serde(rename = "inputStream")] #[serde( deserialize_with = "::rusoto_core::serialization::SerdeBlob::deserialize_blob", serialize_with = "::rusoto_core::serialization::SerdeBlob::serialize_blob", default )] pub input_stream: bytes::Bytes, /// <p>You pass this value as the <code>x-amz-lex-request-attributes</code> HTTP header.</p> <p>Request-specific information passed between Amazon Lex and a client application. The value must be a JSON serialized and base64 encoded map with string keys and values. The total size of the <code>requestAttributes</code> and <code>sessionAttributes</code> headers is limited to 12 KB.</p> <p>The namespace <code>x-amz-lex:</code> is reserved for special attributes. Don't create any request attributes with the prefix <code>x-amz-lex:</code>.</p> <p>For more information, see <a href="http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-request-attribs">Setting Request Attributes</a>.</p> #[serde(rename = "requestAttributes")] #[serde(skip_serializing_if = "Option::is_none")] pub request_attributes: Option<String>, /// <p>You pass this value as the <code>x-amz-lex-session-attributes</code> HTTP header.</p> <p>Application-specific information passed between Amazon Lex and a client application. The value must be a JSON serialized and base64 encoded map with string keys and values. The total size of the <code>sessionAttributes</code> and <code>requestAttributes</code> headers is limited to 12 KB.</p> <p>For more information, see <a href="http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-session-attribs">Setting Session Attributes</a>.</p> #[serde(rename = "sessionAttributes")] #[serde(skip_serializing_if = "Option::is_none")] pub session_attributes: Option<String>, /// <p><p>The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your bot. At runtime, each request must contain the <code>userID</code> field.</p> <p>To decide the user ID to use for your application, consider the following factors.</p> <ul> <li> <p>The <code>userID</code> field must not contain any personally identifiable information of the user, for example, name, personal identification numbers, or other end user personal information.</p> </li> <li> <p>If you want a user to start a conversation on one device and continue on another device, use a user-specific identifier.</p> </li> <li> <p>If you want the same user to be able to have two independent conversations on two different devices, choose a device-specific identifier.</p> </li> <li> <p>A user can't have two independent conversations with two different versions of the same bot. For example, a user can't have a conversation with the PROD and BETA versions of the same bot. If you anticipate that a user will need to have conversation with two different versions, for example, while testing, include the bot alias in the user ID to separate the two conversations.</p> </li> </ul></p> #[serde(rename = "userId")] pub user_id: String, } #[derive(Default, Debug, Clone, PartialEq)] pub struct PostContentResponse { /// <p>The prompt (or statement) to convey to the user. This is based on the bot configuration and context. For example, if Amazon Lex did not understand the user intent, it sends the <code>clarificationPrompt</code> configured for the bot. If the intent requires confirmation before taking the fulfillment action, it sends the <code>confirmationPrompt</code>. Another example: Suppose that the Lambda function successfully fulfilled the intent, and sent a message to convey to the user. Then Amazon Lex sends that message in the response. </p> pub audio_stream: Option<bytes::Bytes>, /// <p>Content type as specified in the <code>Accept</code> HTTP header in the request.</p> pub content_type: Option<String>, /// <p><p>Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p> <ul> <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent. Consider the following examples: </p> <p> For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialog state. </p> </li> <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an intent. Instead of a simple "yes" or "no" response, a user might respond with additional information. For example, "yes, but make it a thick crust pizza" or "no, I want to order a drink." Amazon Lex can process such additional information (in these examples, update the crust type slot or change the intent from OrderPizza to OrderDrink). </p> </li> <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function has successfully fulfilled the intent. </p> </li> <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the request. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons, including that the user does not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or if the Lambda function fails to fulfill the intent. </p> </li> </ul></p> pub dialog_state: Option<String>, /// <p>The text used to process the request.</p> <p>If the input was an audio stream, the <code>inputTranscript</code> field contains the text extracted from the audio stream. This is the text that is actually processed to recognize intents and slot values. You can use this information to determine if Amazon Lex is correctly processing the audio that you send.</p> pub input_transcript: Option<String>, /// <p>Current user intent that Amazon Lex is aware of.</p> pub intent_name: Option<String>, /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p> <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p> <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p> pub message: Option<String>, /// <p><p>The format of the response message. One of the following values:</p> <ul> <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li> </ul></p> pub message_format: Option<String>, /// <p> Map of key/value pairs representing the session-specific context information. </p> pub session_attributes: Option<String>, /// <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p> pub slot_to_elicit: Option<String>, /// <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from the user input during the conversation.</p> <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p> pub slots: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct PostTextRequest { /// <p>The alias of the Amazon Lex bot.</p> #[serde(rename = "botAlias")] pub bot_alias: String, /// <p>The name of the Amazon Lex bot.</p> #[serde(rename = "botName")] pub bot_name: String, /// <p>The text that the user entered (Amazon Lex interprets this text).</p> #[serde(rename = "inputText")] pub input_text: String, /// <p>Request-specific information passed between Amazon Lex and a client application.</p> <p>The namespace <code>x-amz-lex:</code> is reserved for special attributes. Don't create any request attributes with the prefix <code>x-amz-lex:</code>.</p> <p>For more information, see <a href="http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-request-attribs">Setting Request Attributes</a>.</p> #[serde(rename = "requestAttributes")] #[serde(skip_serializing_if = "Option::is_none")] pub request_attributes: Option<::std::collections::HashMap<String, String>>, /// <p>Application-specific information passed between Amazon Lex and a client application.</p> <p>For more information, see <a href="http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html#context-mgmt-session-attribs">Setting Session Attributes</a>.</p> #[serde(rename = "sessionAttributes")] #[serde(skip_serializing_if = "Option::is_none")] pub session_attributes: Option<::std::collections::HashMap<String, String>>, /// <p><p>The ID of the client application user. Amazon Lex uses this to identify a user's conversation with your bot. At runtime, each request must contain the <code>userID</code> field.</p> <p>To decide the user ID to use for your application, consider the following factors.</p> <ul> <li> <p>The <code>userID</code> field must not contain any personally identifiable information of the user, for example, name, personal identification numbers, or other end user personal information.</p> </li> <li> <p>If you want a user to start a conversation on one device and continue on another device, use a user-specific identifier.</p> </li> <li> <p>If you want the same user to be able to have two independent conversations on two different devices, choose a device-specific identifier.</p> </li> <li> <p>A user can't have two independent conversations with two different versions of the same bot. For example, a user can't have a conversation with the PROD and BETA versions of the same bot. If you anticipate that a user will need to have conversation with two different versions, for example, while testing, include the bot alias in the user ID to separate the two conversations.</p> </li> </ul></p> #[serde(rename = "userId")] pub user_id: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct PostTextResponse { /// <p><p> Identifies the current state of the user interaction. Amazon Lex returns one of the following values as <code>dialogState</code>. The client can optionally use this information to customize the user interface. </p> <ul> <li> <p> <code>ElicitIntent</code> - Amazon Lex wants to elicit user intent. </p> <p>For example, a user might utter an intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent from this utterance, it will return this dialogState.</p> </li> <li> <p> <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response. </p> <p> For example, Amazon Lex wants user confirmation before fulfilling an intent. </p> <p>Instead of a simple "yes" or "no," a user might respond with additional information. For example, "yes, but make it thick crust pizza" or "no, I want to order a drink". Amazon Lex can process such additional information (in these examples, update the crust type slot value, or change intent from OrderPizza to OrderDrink).</p> </li> <li> <p> <code>ElicitSlot</code> - Amazon Lex is expecting a slot value for the current intent. </p> <p>For example, suppose that in the response Amazon Lex sends this message: "What size pizza would you like?". A user might reply with the slot value (e.g., "medium"). The user might also provide additional information in the response (e.g., "medium thick crust pizza"). Amazon Lex can process such additional information appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the Lambda function configured for the intent has successfully fulfilled the intent. </p> </li> <li> <p> <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the intent. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation with the user failed. </p> <p> This can happen for various reasons including that the user did not provide an appropriate response to prompts from the service (you can configure how many times Amazon Lex can prompt a user for specific information), or the Lambda function failed to fulfill the intent. </p> </li> </ul></p> #[serde(rename = "dialogState")] #[serde(skip_serializing_if = "Option::is_none")] pub dialog_state: Option<String>, /// <p>The current user intent that Amazon Lex is aware of.</p> #[serde(rename = "intentName")] #[serde(skip_serializing_if = "Option::is_none")] pub intent_name: Option<String>, /// <p>The message to convey to the user. The message can come from the bot's configuration or from a Lambda function.</p> <p>If the intent is not configured with a Lambda function, or if the Lambda function returned <code>Delegate</code> as the <code>dialogAction.type</code> its response, Amazon Lex decides on the next course of action and selects an appropriate message from the bot's configuration based on the current interaction context. For example, if Amazon Lex isn't able to understand user input, it uses a clarification prompt message.</p> <p>When you create an intent you can assign messages to groups. When messages are assigned to groups Amazon Lex returns one message from each group in the response. The message field is an escaped JSON string containing the messages. For more information about the structure of the JSON string returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns a message, Amazon Lex passes it to the client in its response.</p> #[serde(rename = "message")] #[serde(skip_serializing_if = "Option::is_none")] pub message: Option<String>, /// <p><p>The format of the response message. One of the following values:</p> <ul> <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p> </li> <li> <p> <code>CustomPayload</code> - The message is a custom format defined by the Lambda function.</p> </li> <li> <p> <code>SSML</code> - The message contains text formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The message contains an escaped JSON object containing one or more messages from the groups that messages were assigned to when the intent was created.</p> </li> </ul></p> #[serde(rename = "messageFormat")] #[serde(skip_serializing_if = "Option::is_none")] pub message_format: Option<String>, /// <p>Represents the options that the user has to respond to the current prompt. Response Card can come from the bot configuration (in the Amazon Lex console, choose the settings button next to a slot) or from a code hook (Lambda function). </p> #[serde(rename = "responseCard")] #[serde(skip_serializing_if = "Option::is_none")] pub response_card: Option<ResponseCard>, /// <p>A map of key-value pairs representing the session-specific context information.</p> #[serde(rename = "sessionAttributes")] #[serde(skip_serializing_if = "Option::is_none")] pub session_attributes: Option<::std::collections::HashMap<String, String>>, /// <p>If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns the name of the slot for which Amazon Lex is eliciting a value. </p> #[serde(rename = "slotToElicit")] #[serde(skip_serializing_if = "Option::is_none")] pub slot_to_elicit: Option<String>, /// <p> The intent slots that Amazon Lex detected from the user input in the conversation. </p> <p>Amazon Lex creates a resolution list containing likely values for a slot. The value that it returns is determined by the <code>valueSelectionStrategy</code> selected when the slot type was created or updated. If <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the value provided by the user is returned, if the user value is similar to the slot values. If <code>valueSelectionStrategy</code> is set to <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution list or, if there is no resolution list, null. If you don't specify a <code>valueSelectionStrategy</code>, the default is <code>ORIGINAL_VALUE</code>.</p> #[serde(rename = "slots")] #[serde(skip_serializing_if = "Option::is_none")] pub slots: Option<::std::collections::HashMap<String, String>>, } /// <p>If you configure a response card when creating your bots, Amazon Lex substitutes the session attributes and slot values that are available, and then returns it. The response card can also come from a Lambda function ( <code>dialogCodeHook</code> and <code>fulfillmentActivity</code> on an intent).</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ResponseCard { /// <p>The content type of the response.</p> #[serde(rename = "contentType")] #[serde(skip_serializing_if = "Option::is_none")] pub content_type: Option<String>, /// <p>An array of attachment objects representing options.</p> #[serde(rename = "genericAttachments")] #[serde(skip_serializing_if = "Option::is_none")] pub generic_attachments: Option<Vec<GenericAttachment>>, /// <p>The version of the response card format.</p> #[serde(rename = "version")] #[serde(skip_serializing_if = "Option::is_none")] pub version: Option<String>, } /// Errors returned by PostContent #[derive(Debug, PartialEq)] pub enum PostContentError { /// <p>Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS Lambda) failed with an internal service error.</p> BadGateway(String), /// <p> Request validation failed, there is no usable message in the context, or the bot build failed, is still in progress, or contains unbuilt changes. </p> BadRequest(String), /// <p> Two clients are using the same AWS account, Amazon Lex bot, and user ID. </p> Conflict(String), /// <p><p> One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For example, </p> <ul> <li> <p>If Amazon Lex does not have sufficient permissions to call a Lambda function.</p> </li> <li> <p>If a Lambda function takes longer than 30 seconds to execute.</p> </li> <li> <p>If a fulfillment Lambda function returns a <code>Delegate</code> dialog action without removing any slot values.</p> </li> </ul></p> DependencyFailed(String), /// <p>Internal service error. Retry the call.</p> InternalFailure(String), /// <p>Exceeded a limit.</p> LimitExceeded(String), /// <p>This exception is not used.</p> LoopDetected(String), /// <p>The accept header in the request does not have a valid value.</p> NotAcceptable(String), /// <p>The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.</p> NotFound(String), /// <p>The input speech is too long.</p> RequestTimeout(String), /// <p>The Content-Type header (<code>PostContent</code> API) has an invalid value. </p> UnsupportedMediaType(String), } impl PostContentError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<PostContentError> { if let Some(err) = proto::json::Error::parse_rest(&res) { match err.typ.as_str() { "BadGatewayException" => { return RusotoError::Service(PostContentError::BadGateway(err.msg)) } "BadRequestException" => { return RusotoError::Service(PostContentError::BadRequest(err.msg)) } "ConflictException" => { return RusotoError::Service(PostContentError::Conflict(err.msg)) } "DependencyFailedException" => { return RusotoError::Service(PostContentError::DependencyFailed(err.msg)) } "InternalFailureException" => { return RusotoError::Service(PostContentError::InternalFailure(err.msg)) } "LimitExceededException" => { return RusotoError::Service(PostContentError::LimitExceeded(err.msg)) } "LoopDetectedException" => { return RusotoError::Service(PostContentError::LoopDetected(err.msg)) } "NotAcceptableException" => { return RusotoError::Service(PostContentError::NotAcceptable(err.msg)) } "NotFoundException" => { return RusotoError::Service(PostContentError::NotFound(err.msg)) } "RequestTimeoutException" => { return RusotoError::Service(PostContentError::RequestTimeout(err.msg)) } "UnsupportedMediaTypeException" => { return RusotoError::Service(PostContentError::UnsupportedMediaType(err.msg)) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for PostContentError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for PostContentError { fn description(&self) -> &str { match *self { PostContentError::BadGateway(ref cause) => cause, PostContentError::BadRequest(ref cause) => cause, PostContentError::Conflict(ref cause) => cause, PostContentError::DependencyFailed(ref cause) => cause, PostContentError::InternalFailure(ref cause) => cause, PostContentError::LimitExceeded(ref cause) => cause, PostContentError::LoopDetected(ref cause) => cause, PostContentError::NotAcceptable(ref cause) => cause, PostContentError::NotFound(ref cause) => cause, PostContentError::RequestTimeout(ref cause) => cause, PostContentError::UnsupportedMediaType(ref cause) => cause, } } } /// Errors returned by PostText #[derive(Debug, PartialEq)] pub enum PostTextError { /// <p>Either the Amazon Lex bot is still building, or one of the dependent services (Amazon Polly, AWS Lambda) failed with an internal service error.</p> BadGateway(String), /// <p> Request validation failed, there is no usable message in the context, or the bot build failed, is still in progress, or contains unbuilt changes. </p> BadRequest(String), /// <p> Two clients are using the same AWS account, Amazon Lex bot, and user ID. </p> Conflict(String), /// <p><p> One of the dependencies, such as AWS Lambda or Amazon Polly, threw an exception. For example, </p> <ul> <li> <p>If Amazon Lex does not have sufficient permissions to call a Lambda function.</p> </li> <li> <p>If a Lambda function takes longer than 30 seconds to execute.</p> </li> <li> <p>If a fulfillment Lambda function returns a <code>Delegate</code> dialog action without removing any slot values.</p> </li> </ul></p> DependencyFailed(String), /// <p>Internal service error. Retry the call.</p> InternalFailure(String), /// <p>Exceeded a limit.</p> LimitExceeded(String), /// <p>This exception is not used.</p> LoopDetected(String), /// <p>The resource (such as the Amazon Lex bot or an alias) that is referred to is not found.</p> NotFound(String), } impl PostTextError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<PostTextError> { if let Some(err) = proto::json::Error::parse_rest(&res) { match err.typ.as_str() { "BadGatewayException" => { return RusotoError::Service(PostTextError::BadGateway(err.msg)) } "BadRequestException" => { return RusotoError::Service(PostTextError::BadRequest(err.msg)) } "ConflictException" => { return RusotoError::Service(PostTextError::Conflict(err.msg)) } "DependencyFailedException" => { return RusotoError::Service(PostTextError::DependencyFailed(err.msg)) } "InternalFailureException" => { return RusotoError::Service(PostTextError::InternalFailure(err.msg)) } "LimitExceededException" => { return RusotoError::Service(PostTextError::LimitExceeded(err.msg)) } "LoopDetectedException" => { return RusotoError::Service(PostTextError::LoopDetected(err.msg)) } "NotFoundException" => { return RusotoError::Service(PostTextError::NotFound(err.msg)) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for PostTextError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for PostTextError { fn description(&self) -> &str { match *self { PostTextError::BadGateway(ref cause) => cause, PostTextError::BadRequest(ref cause) => cause, PostTextError::Conflict(ref cause) => cause, PostTextError::DependencyFailed(ref cause) => cause, PostTextError::InternalFailure(ref cause) => cause, PostTextError::LimitExceeded(ref cause) => cause, PostTextError::LoopDetected(ref cause) => cause, PostTextError::NotFound(ref cause) => cause, } } } /// Trait representing the capabilities of the Amazon Lex Runtime Service API. Amazon Lex Runtime Service clients implement this trait. pub trait LexRuntime { /// <p> Sends user input (text or speech) to Amazon Lex. Clients use this API to send text and audio requests to Amazon Lex at runtime. Amazon Lex interprets the user input using the machine learning model that it built for the bot. </p> <p>The <code>PostContent</code> operation supports audio input at 8kHz and 16kHz. You can use 8kHz audio to achieve higher speech recognition accuracy in telephone audio applications. </p> <p> In response, Amazon Lex returns the next message to convey to the user. Consider the following example messages: </p> <ul> <li> <p> For a user input "I would like a pizza," Amazon Lex might return a response with a message eliciting slot data (for example, <code>PizzaSize</code>): "What size pizza would you like?". </p> </li> <li> <p> After the user provides all of the pizza order information, Amazon Lex might return a response with a message to get user confirmation: "Order the pizza?". </p> </li> <li> <p> After the user replies "Yes" to the confirmation prompt, Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.". </p> </li> </ul> <p> Not all Amazon Lex messages require a response from the user. For example, conclusion statements do not require a response. Some messages require only a yes or no response. In addition to the <code>message</code>, Amazon Lex provides additional context about the message in the response that you can use to enhance client behavior, such as displaying the appropriate client user interface. Consider the following examples: </p> <ul> <li> <p> If the message is to elicit slot data, Amazon Lex returns the following context information: </p> <ul> <li> <p> <code>x-amz-lex-dialog-state</code> header set to <code>ElicitSlot</code> </p> </li> <li> <p> <code>x-amz-lex-intent-name</code> header set to the intent name in the current context </p> </li> <li> <p> <code>x-amz-lex-slot-to-elicit</code> header set to the slot name for which the <code>message</code> is eliciting information </p> </li> <li> <p> <code>x-amz-lex-slots</code> header set to a map of slots configured for the intent with their current values </p> </li> </ul> </li> <li> <p> If the message is a confirmation prompt, the <code>x-amz-lex-dialog-state</code> header is set to <code>Confirmation</code> and the <code>x-amz-lex-slot-to-elicit</code> header is omitted. </p> </li> <li> <p> If the message is a clarification prompt configured for the intent, indicating that the user intent is not understood, the <code>x-amz-dialog-state</code> header is set to <code>ElicitIntent</code> and the <code>x-amz-slot-to-elicit</code> header is omitted. </p> </li> </ul> <p> In addition, Amazon Lex also returns your application-specific <code>sessionAttributes</code>. For more information, see <a href="http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html">Managing Conversation Context</a>. </p> fn post_content( &self, input: PostContentRequest, ) -> RusotoFuture<PostContentResponse, PostContentError>; /// <p>Sends user input (text-only) to Amazon Lex. Client applications can use this API to send requests to Amazon Lex at runtime. Amazon Lex then interprets the user input using the machine learning model it built for the bot. </p> <p> In response, Amazon Lex returns the next <code>message</code> to convey to the user an optional <code>responseCard</code> to display. Consider the following example messages: </p> <ul> <li> <p> For a user input "I would like a pizza", Amazon Lex might return a response with a message eliciting slot data (for example, PizzaSize): "What size pizza would you like?" </p> </li> <li> <p> After the user provides all of the pizza order information, Amazon Lex might return a response with a message to obtain user confirmation "Proceed with the pizza order?". </p> </li> <li> <p> After the user replies to a confirmation prompt with a "yes", Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.". </p> </li> </ul> <p> Not all Amazon Lex messages require a user response. For example, a conclusion statement does not require a response. Some messages require only a "yes" or "no" user response. In addition to the <code>message</code>, Amazon Lex provides additional context about the message in the response that you might use to enhance client behavior, for example, to display the appropriate client user interface. These are the <code>slotToElicit</code>, <code>dialogState</code>, <code>intentName</code>, and <code>slots</code> fields in the response. Consider the following examples: </p> <ul> <li> <p>If the message is to elicit slot data, Amazon Lex returns the following context information:</p> <ul> <li> <p> <code>dialogState</code> set to ElicitSlot </p> </li> <li> <p> <code>intentName</code> set to the intent name in the current context </p> </li> <li> <p> <code>slotToElicit</code> set to the slot name for which the <code>message</code> is eliciting information </p> </li> <li> <p> <code>slots</code> set to a map of slots, configured for the intent, with currently known values </p> </li> </ul> </li> <li> <p> If the message is a confirmation prompt, the <code>dialogState</code> is set to ConfirmIntent and <code>SlotToElicit</code> is set to null. </p> </li> <li> <p>If the message is a clarification prompt (configured for the intent) that indicates that user intent is not understood, the <code>dialogState</code> is set to ElicitIntent and <code>slotToElicit</code> is set to null. </p> </li> </ul> <p> In addition, Amazon Lex also returns your application-specific <code>sessionAttributes</code>. For more information, see <a href="http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html">Managing Conversation Context</a>. </p> fn post_text(&self, input: PostTextRequest) -> RusotoFuture<PostTextResponse, PostTextError>; } /// A client for the Amazon Lex Runtime Service API. #[derive(Clone)] pub struct LexRuntimeClient { client: Client, region: region::Region, } impl LexRuntimeClient { /// Creates a client backed by the default tokio event loop. /// /// The client will use the default credentials provider and tls client. pub fn new(region: region::Region) -> LexRuntimeClient { LexRuntimeClient { client: Client::shared(), region, } } pub fn new_with<P, D>( request_dispatcher: D, credentials_provider: P, region: region::Region, ) -> LexRuntimeClient where P: ProvideAwsCredentials + Send + Sync + 'static, P::Future: Send, D: DispatchSignedRequest + Send + Sync + 'static, D::Future: Send, { LexRuntimeClient { client: Client::new_with(credentials_provider, request_dispatcher), region, } } } impl LexRuntime for LexRuntimeClient { /// <p> Sends user input (text or speech) to Amazon Lex. Clients use this API to send text and audio requests to Amazon Lex at runtime. Amazon Lex interprets the user input using the machine learning model that it built for the bot. </p> <p>The <code>PostContent</code> operation supports audio input at 8kHz and 16kHz. You can use 8kHz audio to achieve higher speech recognition accuracy in telephone audio applications. </p> <p> In response, Amazon Lex returns the next message to convey to the user. Consider the following example messages: </p> <ul> <li> <p> For a user input "I would like a pizza," Amazon Lex might return a response with a message eliciting slot data (for example, <code>PizzaSize</code>): "What size pizza would you like?". </p> </li> <li> <p> After the user provides all of the pizza order information, Amazon Lex might return a response with a message to get user confirmation: "Order the pizza?". </p> </li> <li> <p> After the user replies "Yes" to the confirmation prompt, Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.". </p> </li> </ul> <p> Not all Amazon Lex messages require a response from the user. For example, conclusion statements do not require a response. Some messages require only a yes or no response. In addition to the <code>message</code>, Amazon Lex provides additional context about the message in the response that you can use to enhance client behavior, such as displaying the appropriate client user interface. Consider the following examples: </p> <ul> <li> <p> If the message is to elicit slot data, Amazon Lex returns the following context information: </p> <ul> <li> <p> <code>x-amz-lex-dialog-state</code> header set to <code>ElicitSlot</code> </p> </li> <li> <p> <code>x-amz-lex-intent-name</code> header set to the intent name in the current context </p> </li> <li> <p> <code>x-amz-lex-slot-to-elicit</code> header set to the slot name for which the <code>message</code> is eliciting information </p> </li> <li> <p> <code>x-amz-lex-slots</code> header set to a map of slots configured for the intent with their current values </p> </li> </ul> </li> <li> <p> If the message is a confirmation prompt, the <code>x-amz-lex-dialog-state</code> header is set to <code>Confirmation</code> and the <code>x-amz-lex-slot-to-elicit</code> header is omitted. </p> </li> <li> <p> If the message is a clarification prompt configured for the intent, indicating that the user intent is not understood, the <code>x-amz-dialog-state</code> header is set to <code>ElicitIntent</code> and the <code>x-amz-slot-to-elicit</code> header is omitted. </p> </li> </ul> <p> In addition, Amazon Lex also returns your application-specific <code>sessionAttributes</code>. For more information, see <a href="http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html">Managing Conversation Context</a>. </p> fn post_content( &self, input: PostContentRequest, ) -> RusotoFuture<PostContentResponse, PostContentError> { let request_uri = format!( "/bot/{bot_name}/alias/{bot_alias}/user/{user_id}/content", bot_alias = input.bot_alias, bot_name = input.bot_name, user_id = input.user_id ); let mut request = SignedRequest::new("POST", "lex", &self.region, &request_uri); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.set_endpoint_prefix("runtime.lex".to_string()); let encoded = Some(input.input_stream.to_owned()); request.set_payload(encoded); if let Some(ref accept) = input.accept { request.add_header("Accept", &accept.to_string()); } request.add_header("Content-Type", &input.content_type); if let Some(ref request_attributes) = input.request_attributes { request.add_header( "x-amz-lex-request-attributes", &request_attributes.to_string(), ); } if let Some(ref session_attributes) = input.session_attributes { request.add_header( "x-amz-lex-session-attributes", &session_attributes.to_string(), ); } self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { let mut result = PostContentResponse::default(); result.audio_stream = Some(response.body); if let Some(content_type) = response.headers.get("Content-Type") { let value = content_type.to_owned(); result.content_type = Some(value) }; if let Some(dialog_state) = response.headers.get("x-amz-lex-dialog-state") { let value = dialog_state.to_owned(); result.dialog_state = Some(value) }; if let Some(input_transcript) = response.headers.get("x-amz-lex-input-transcript") { let value = input_transcript.to_owned(); result.input_transcript = Some(value) }; if let Some(intent_name) = response.headers.get("x-amz-lex-intent-name") { let value = intent_name.to_owned(); result.intent_name = Some(value) }; if let Some(message) = response.headers.get("x-amz-lex-message") { let value = message.to_owned(); result.message = Some(value) }; if let Some(message_format) = response.headers.get("x-amz-lex-message-format") { let value = message_format.to_owned(); result.message_format = Some(value) }; if let Some(session_attributes) = response.headers.get("x-amz-lex-session-attributes") { let value = session_attributes.to_owned(); result.session_attributes = Some(value) }; if let Some(slot_to_elicit) = response.headers.get("x-amz-lex-slot-to-elicit") { let value = slot_to_elicit.to_owned(); result.slot_to_elicit = Some(value) }; if let Some(slots) = response.headers.get("x-amz-lex-slots") { let value = slots.to_owned(); result.slots = Some(value) }; Ok(result) })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(PostContentError::from_response(response))), ) } }) } /// <p>Sends user input (text-only) to Amazon Lex. Client applications can use this API to send requests to Amazon Lex at runtime. Amazon Lex then interprets the user input using the machine learning model it built for the bot. </p> <p> In response, Amazon Lex returns the next <code>message</code> to convey to the user an optional <code>responseCard</code> to display. Consider the following example messages: </p> <ul> <li> <p> For a user input "I would like a pizza", Amazon Lex might return a response with a message eliciting slot data (for example, PizzaSize): "What size pizza would you like?" </p> </li> <li> <p> After the user provides all of the pizza order information, Amazon Lex might return a response with a message to obtain user confirmation "Proceed with the pizza order?". </p> </li> <li> <p> After the user replies to a confirmation prompt with a "yes", Amazon Lex might return a conclusion statement: "Thank you, your cheese pizza has been ordered.". </p> </li> </ul> <p> Not all Amazon Lex messages require a user response. For example, a conclusion statement does not require a response. Some messages require only a "yes" or "no" user response. In addition to the <code>message</code>, Amazon Lex provides additional context about the message in the response that you might use to enhance client behavior, for example, to display the appropriate client user interface. These are the <code>slotToElicit</code>, <code>dialogState</code>, <code>intentName</code>, and <code>slots</code> fields in the response. Consider the following examples: </p> <ul> <li> <p>If the message is to elicit slot data, Amazon Lex returns the following context information:</p> <ul> <li> <p> <code>dialogState</code> set to ElicitSlot </p> </li> <li> <p> <code>intentName</code> set to the intent name in the current context </p> </li> <li> <p> <code>slotToElicit</code> set to the slot name for which the <code>message</code> is eliciting information </p> </li> <li> <p> <code>slots</code> set to a map of slots, configured for the intent, with currently known values </p> </li> </ul> </li> <li> <p> If the message is a confirmation prompt, the <code>dialogState</code> is set to ConfirmIntent and <code>SlotToElicit</code> is set to null. </p> </li> <li> <p>If the message is a clarification prompt (configured for the intent) that indicates that user intent is not understood, the <code>dialogState</code> is set to ElicitIntent and <code>slotToElicit</code> is set to null. </p> </li> </ul> <p> In addition, Amazon Lex also returns your application-specific <code>sessionAttributes</code>. For more information, see <a href="http://docs.aws.amazon.com/lex/latest/dg/context-mgmt.html">Managing Conversation Context</a>. </p> fn post_text(&self, input: PostTextRequest) -> RusotoFuture<PostTextResponse, PostTextError> { let request_uri = format!( "/bot/{bot_name}/alias/{bot_alias}/user/{user_id}/text", bot_alias = input.bot_alias, bot_name = input.bot_name, user_id = input.user_id ); let mut request = SignedRequest::new("POST", "lex", &self.region, &request_uri); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.set_endpoint_prefix("runtime.lex".to_string()); let encoded = Some(serde_json::to_vec(&input).unwrap()); request.set_payload(encoded); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { let result = proto::json::ResponsePayload::new(&response) .deserialize::<PostTextResponse, _>()?; Ok(result) })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(PostTextError::from_response(response))), ) } }) } }