1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
// =================================================================
//
//                           * WARNING *
//
//                    This file is generated!
//
//  Changes made to this file will be overwritten. If changes are
//  required to the generated code, the service_crategen project
//  must be updated to generate the changes.
//
// =================================================================

use std::error::Error;
use std::fmt;

#[allow(warnings)]
use futures::future;
use futures::Future;
use rusoto_core::credential::ProvideAwsCredentials;
use rusoto_core::region;
use rusoto_core::request::{BufferedHttpResponse, DispatchSignedRequest};
use rusoto_core::{Client, RusotoError, RusotoFuture};

use rusoto_core::proto;
use rusoto_core::signature::SignedRequest;
use serde_json;
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct AddTagsInput {
    /// <p>The ID of the ML object to tag. For example, <code>exampleModelId</code>.</p>
    #[serde(rename = "ResourceId")]
    pub resource_id: String,
    /// <p>The type of the ML object to tag. </p>
    #[serde(rename = "ResourceType")]
    pub resource_type: String,
    /// <p>The key-value pairs to use to create tags. If you specify a key without specifying a value, Amazon ML creates a tag with the specified key and a value of null.</p>
    #[serde(rename = "Tags")]
    pub tags: Vec<Tag>,
}

/// <p>Amazon ML returns the following elements. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct AddTagsOutput {
    /// <p>The ID of the ML object that was tagged.</p>
    #[serde(rename = "ResourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_id: Option<String>,
    /// <p>The type of the ML object that was tagged.</p>
    #[serde(rename = "ResourceType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_type: Option<String>,
}

/// <p> Represents the output of a <code>GetBatchPrediction</code> operation.</p> <p> The content consists of the detailed metadata, the status, and the data file information of a <code>Batch Prediction</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct BatchPrediction {
    /// <p>The ID of the <code>DataSource</code> that points to the group of observations to predict.</p>
    #[serde(rename = "BatchPredictionDataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_prediction_data_source_id: Option<String>,
    /// <p>The ID assigned to the <code>BatchPrediction</code> at creation. This value should be identical to the value of the <code>BatchPredictionID</code> in the request. </p>
    #[serde(rename = "BatchPredictionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_prediction_id: Option<String>,
    #[serde(rename = "ComputeTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_time: Option<i64>,
    /// <p>The time that the <code>BatchPrediction</code> was created. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p>The AWS user account that invoked the <code>BatchPrediction</code>. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    #[serde(rename = "CreatedByIamUser")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_by_iam_user: Option<String>,
    #[serde(rename = "FinishedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub finished_at: Option<f64>,
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    #[serde(rename = "InputDataLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_location_s3: Option<String>,
    #[serde(rename = "InvalidRecordCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub invalid_record_count: Option<i64>,
    /// <p>The time of the most recent edit to the <code>BatchPrediction</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "LastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_at: Option<f64>,
    /// <p>The ID of the <code>MLModel</code> that generated predictions for the <code>BatchPrediction</code> request.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
    /// <p>A description of the most recent details about processing the batch prediction request.</p>
    #[serde(rename = "Message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p>A user-supplied name or description of the <code>BatchPrediction</code>.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>The location of an Amazon S3 bucket or directory to receive the operation results. The following substrings are not allowed in the <code>s3 key</code> portion of the <code>outputURI</code> field: ':', '//', '/./', '/../'.</p>
    #[serde(rename = "OutputUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub output_uri: Option<String>,
    #[serde(rename = "StartedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub started_at: Option<f64>,
    /// <p><p>The status of the <code>BatchPrediction</code>. This element can have one of the following values:</p> <ul> <li> <code>PENDING</code> - Amazon Machine Learning (Amazon ML) submitted a request to generate predictions for a batch of observations.</li> <li> <code>INPROGRESS</code> - The process is underway.</li> <li> <code>FAILED</code> - The request to perform a batch prediction did not run to completion. It is not usable.</li> <li> <code>COMPLETED</code> - The batch prediction process completed successfully.</li> <li> <code>DELETED</code> - The <code>BatchPrediction</code> is marked as deleted. It is not usable.</li> </ul></p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
    #[serde(rename = "TotalRecordCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub total_record_count: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateBatchPredictionInput {
    /// <p>The ID of the <code>DataSource</code> that points to the group of observations to predict.</p>
    #[serde(rename = "BatchPredictionDataSourceId")]
    pub batch_prediction_data_source_id: String,
    /// <p>A user-supplied ID that uniquely identifies the <code>BatchPrediction</code>.</p>
    #[serde(rename = "BatchPredictionId")]
    pub batch_prediction_id: String,
    /// <p>A user-supplied name or description of the <code>BatchPrediction</code>. <code>BatchPredictionName</code> can only use the UTF-8 character set.</p>
    #[serde(rename = "BatchPredictionName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_prediction_name: Option<String>,
    /// <p>The ID of the <code>MLModel</code> that will generate predictions for the group of observations. </p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
    /// <p>The location of an Amazon Simple Storage Service (Amazon S3) bucket or directory to store the batch prediction results. The following substrings are not allowed in the <code>s3 key</code> portion of the <code>outputURI</code> field: ':', '//', '/./', '/../'.</p> <p>Amazon ML needs permissions to store and retrieve the logs on your behalf. For information about how to set permissions, see the <a href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
    #[serde(rename = "OutputUri")]
    pub output_uri: String,
}

/// <p> Represents the output of a <code>CreateBatchPrediction</code> operation, and is an acknowledgement that Amazon ML received the request.</p> <p>The <code>CreateBatchPrediction</code> operation is asynchronous. You can poll for status updates by using the <code>&gt;GetBatchPrediction</code> operation and checking the <code>Status</code> parameter of the result. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateBatchPredictionOutput {
    /// <p>A user-supplied ID that uniquely identifies the <code>BatchPrediction</code>. This value is identical to the value of the <code>BatchPredictionId</code> in the request.</p>
    #[serde(rename = "BatchPredictionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_prediction_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateDataSourceFromRDSInput {
    /// <p>The compute statistics for a <code>DataSource</code>. The statistics are generated from the observation data referenced by a <code>DataSource</code>. Amazon ML uses the statistics internally during <code>MLModel</code> training. This parameter must be set to <code>true</code> if the <code></code>DataSource<code></code> needs to be used for <code>MLModel</code> training. </p>
    #[serde(rename = "ComputeStatistics")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_statistics: Option<bool>,
    /// <p>A user-supplied ID that uniquely identifies the <code>DataSource</code>. Typically, an Amazon Resource Number (ARN) becomes the ID for a <code>DataSource</code>.</p>
    #[serde(rename = "DataSourceId")]
    pub data_source_id: String,
    /// <p>A user-supplied name or description of the <code>DataSource</code>.</p>
    #[serde(rename = "DataSourceName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_name: Option<String>,
    /// <p><p>The data specification of an Amazon RDS <code>DataSource</code>:</p> <ul> <li><p>DatabaseInformation - <ul> <li> <code>DatabaseName</code> - The name of the Amazon RDS database.</li> <li> <code>InstanceIdentifier </code> - A unique identifier for the Amazon RDS database instance.</li> </ul> </p></li> <li><p>DatabaseCredentials - AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon RDS database.</p></li> <li><p>ResourceRole - A role (DataPipelineDefaultResourceRole) assumed by an EC2 instance to carry out the copy task from Amazon RDS to Amazon Simple Storage Service (Amazon S3). For more information, see <a href="http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html">Role templates</a> for data pipelines.</p></li> <li><p>ServiceRole - A role (DataPipelineDefaultRole) assumed by the AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see <a href="http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html">Role templates</a> for data pipelines.</p></li> <li><p>SecurityInfo - The security information to use to access an RDS DB instance. You need to set up appropriate ingress rules for the security entity IDs provided to allow access to the Amazon RDS instance. Specify a [<code>SubnetId</code>, <code>SecurityGroupIds</code>] pair for a VPC-based RDS DB instance.</p></li> <li><p>SelectSqlQuery - A query that is used to retrieve the observation data for the <code>Datasource</code>.</p></li> <li><p>S3StagingLocation - The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using <code>SelectSqlQuery</code> is stored in this location.</p></li> <li><p>DataSchemaUri - The Amazon S3 location of the <code>DataSchema</code>.</p></li> <li><p>DataSchema - A JSON string representing the schema. This is not required if <code>DataSchemaUri</code> is specified. </p></li> <li> <p>DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the <code>Datasource</code>. </p> <br> <p> Sample - <code> &quot;{&quot;splitting&quot;:{&quot;percentBegin&quot;:10,&quot;percentEnd&quot;:60}}&quot;</code> </p> </li> </ul></p>
    #[serde(rename = "RDSData")]
    pub rds_data: RDSDataSpec,
    /// <p>The role that Amazon ML assumes on behalf of the user to create and activate a data pipeline in the user's account and copy data using the <code>SelectSqlQuery</code> query from Amazon RDS to Amazon S3.</p> <p> </p>
    #[serde(rename = "RoleARN")]
    pub role_arn: String,
}

/// <p> Represents the output of a <code>CreateDataSourceFromRDS</code> operation, and is an acknowledgement that Amazon ML received the request.</p> <p>The <code>CreateDataSourceFromRDS</code>&gt; operation is asynchronous. You can poll for updates by using the <code>GetBatchPrediction</code> operation and checking the <code>Status</code> parameter. You can inspect the <code>Message</code> when <code>Status</code> shows up as <code>FAILED</code>. You can also check the progress of the copy operation by going to the <code>DataPipeline</code> console and looking up the pipeline using the <code>pipelineId </code> from the describe call.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateDataSourceFromRDSOutput {
    /// <p>A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the <code>DataSourceID</code> in the request. </p>
    #[serde(rename = "DataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateDataSourceFromRedshiftInput {
    /// <p>The compute statistics for a <code>DataSource</code>. The statistics are generated from the observation data referenced by a <code>DataSource</code>. Amazon ML uses the statistics internally during <code>MLModel</code> training. This parameter must be set to <code>true</code> if the <code>DataSource</code> needs to be used for <code>MLModel</code> training.</p>
    #[serde(rename = "ComputeStatistics")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_statistics: Option<bool>,
    /// <p>A user-supplied ID that uniquely identifies the <code>DataSource</code>.</p>
    #[serde(rename = "DataSourceId")]
    pub data_source_id: String,
    /// <p>A user-supplied name or description of the <code>DataSource</code>. </p>
    #[serde(rename = "DataSourceName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_name: Option<String>,
    /// <p><p>The data specification of an Amazon Redshift <code>DataSource</code>:</p> <ul> <li><p>DatabaseInformation - <ul> <li> <code>DatabaseName</code> - The name of the Amazon Redshift database. </li> <li> <code> ClusterIdentifier</code> - The unique ID for the Amazon Redshift cluster.</li> </ul></p></li> <li><p>DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.</p></li> <li><p>SelectSqlQuery - The query that is used to retrieve the observation data for the <code>Datasource</code>.</p></li> <li><p>S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the <code>SelectSqlQuery</code> query is stored in this location.</p></li> <li><p>DataSchemaUri - The Amazon S3 location of the <code>DataSchema</code>.</p></li> <li><p>DataSchema - A JSON string representing the schema. This is not required if <code>DataSchemaUri</code> is specified. </p></li> <li> <p>DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the <code>DataSource</code>.</p> <p> Sample - <code> &quot;{&quot;splitting&quot;:{&quot;percentBegin&quot;:10,&quot;percentEnd&quot;:60}}&quot;</code> </p> </li> </ul></p>
    #[serde(rename = "DataSpec")]
    pub data_spec: RedshiftDataSpec,
    /// <p>A fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following: </p> <p> <ul> <li><p>A security group to allow Amazon ML to execute the <code>SelectSqlQuery</code> query on an Amazon Redshift cluster</p></li> <li><p>An Amazon S3 bucket policy to grant Amazon ML read/write permissions on the <code>S3StagingLocation</code></p></li> </ul> </p>
    #[serde(rename = "RoleARN")]
    pub role_arn: String,
}

/// <p> Represents the output of a <code>CreateDataSourceFromRedshift</code> operation, and is an acknowledgement that Amazon ML received the request.</p> <p>The <code>CreateDataSourceFromRedshift</code> operation is asynchronous. You can poll for updates by using the <code>GetBatchPrediction</code> operation and checking the <code>Status</code> parameter. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateDataSourceFromRedshiftOutput {
    /// <p>A user-supplied ID that uniquely identifies the datasource. This value should be identical to the value of the <code>DataSourceID</code> in the request. </p>
    #[serde(rename = "DataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateDataSourceFromS3Input {
    /// <p>The compute statistics for a <code>DataSource</code>. The statistics are generated from the observation data referenced by a <code>DataSource</code>. Amazon ML uses the statistics internally during <code>MLModel</code> training. This parameter must be set to <code>true</code> if the <code></code>DataSource<code></code> needs to be used for <code>MLModel</code> training.</p>
    #[serde(rename = "ComputeStatistics")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_statistics: Option<bool>,
    /// <p>A user-supplied identifier that uniquely identifies the <code>DataSource</code>. </p>
    #[serde(rename = "DataSourceId")]
    pub data_source_id: String,
    /// <p>A user-supplied name or description of the <code>DataSource</code>. </p>
    #[serde(rename = "DataSourceName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_name: Option<String>,
    /// <p><p>The data specification of a <code>DataSource</code>:</p> <ul> <li><p>DataLocationS3 - The Amazon S3 location of the observation data.</p></li> <li><p>DataSchemaLocationS3 - The Amazon S3 location of the <code>DataSchema</code>.</p></li> <li><p>DataSchema - A JSON string representing the schema. This is not required if <code>DataSchemaUri</code> is specified. </p></li> <li> <p>DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the <code>Datasource</code>. </p> <p> Sample - <code> &quot;{&quot;splitting&quot;:{&quot;percentBegin&quot;:10,&quot;percentEnd&quot;:60}}&quot;</code> </p> </li> </ul></p>
    #[serde(rename = "DataSpec")]
    pub data_spec: S3DataSpec,
}

/// <p> Represents the output of a <code>CreateDataSourceFromS3</code> operation, and is an acknowledgement that Amazon ML received the request.</p> <p>The <code>CreateDataSourceFromS3</code> operation is asynchronous. You can poll for updates by using the <code>GetBatchPrediction</code> operation and checking the <code>Status</code> parameter. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateDataSourceFromS3Output {
    /// <p>A user-supplied ID that uniquely identifies the <code>DataSource</code>. This value should be identical to the value of the <code>DataSourceID</code> in the request. </p>
    #[serde(rename = "DataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateEvaluationInput {
    /// <p>The ID of the <code>DataSource</code> for the evaluation. The schema of the <code>DataSource</code> must match the schema used to create the <code>MLModel</code>.</p>
    #[serde(rename = "EvaluationDataSourceId")]
    pub evaluation_data_source_id: String,
    /// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code>.</p>
    #[serde(rename = "EvaluationId")]
    pub evaluation_id: String,
    /// <p>A user-supplied name or description of the <code>Evaluation</code>.</p>
    #[serde(rename = "EvaluationName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub evaluation_name: Option<String>,
    /// <p>The ID of the <code>MLModel</code> to evaluate.</p> <p>The schema used in creating the <code>MLModel</code> must match the schema of the <code>DataSource</code> used in the <code>Evaluation</code>.</p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
}

/// <p> Represents the output of a <code>CreateEvaluation</code> operation, and is an acknowledgement that Amazon ML received the request.</p> <p><code>CreateEvaluation</code> operation is asynchronous. You can poll for status updates by using the <code>GetEvcaluation</code> operation and checking the <code>Status</code> parameter. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateEvaluationOutput {
    /// <p>The user-supplied ID that uniquely identifies the <code>Evaluation</code>. This value should be identical to the value of the <code>EvaluationId</code> in the request.</p>
    #[serde(rename = "EvaluationId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub evaluation_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateMLModelInput {
    /// <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
    /// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
    #[serde(rename = "MLModelName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_name: Option<String>,
    /// <p>The category of supervised learning that this <code>MLModel</code> will address. Choose from the following types:</p> <ul> <li>Choose <code>REGRESSION</code> if the <code>MLModel</code> will be used to predict a numeric value.</li> <li>Choose <code>BINARY</code> if the <code>MLModel</code> result has two possible values.</li> <li>Choose <code>MULTICLASS</code> if the <code>MLModel</code> result has a limited number of values. </li> </ul> <p> For more information, see the <a href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>.</p>
    #[serde(rename = "MLModelType")]
    pub ml_model_type: String,
    /// <p><p>A list of the training parameters in the <code>MLModel</code>. The list is implemented as a map of key-value pairs.</p> <p>The following is the current set of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code> - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.</p> <p> The value is an integer that ranges from <code>100000</code> to <code>2147483648</code>. The default value is <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number of times that the training process traverses the observations to build the <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to <code>10000</code>. The default value is <code>10</code>.</p></li> <li> <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data. Shuffling the data improves a model&#39;s ability to find the optimal solution for a variety of data types. The valid values are <code>auto</code> and <code>none</code>. The default value is <code>none</code>. We &lt;?oxy<em>insert</em>start author=&quot;laurama&quot; timestamp=&quot;20160329T131121-0700&quot;&gt;strongly recommend that you shuffle your data.&lt;?oxy<em>insert</em>end&gt;</p> </li> <li> <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The value is a double that ranges from <code>0</code> to <code>MAX<em>DOUBLE</code>. The default is to not use L1 normalization. This parameter can&#39;t be used when <code>L2</code> is specified. Use this parameter sparingly.</p> </li> <li> <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The value is a double that ranges from <code>0</code> to <code>MAX</em>DOUBLE</code>. The default is to not use L2 normalization. This parameter can&#39;t be used when <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul></p>
    #[serde(rename = "Parameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub parameters: Option<::std::collections::HashMap<String, String>>,
    /// <p>The data recipe for creating the <code>MLModel</code>. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.</p>
    #[serde(rename = "Recipe")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub recipe: Option<String>,
    /// <p>The Amazon Simple Storage Service (Amazon S3) location and file name that contains the <code>MLModel</code> recipe. You must specify either the recipe or its URI. If you don't specify a recipe or its URI, Amazon ML creates a default.</p>
    #[serde(rename = "RecipeUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub recipe_uri: Option<String>,
    /// <p>The <code>DataSource</code> that points to the training data.</p>
    #[serde(rename = "TrainingDataSourceId")]
    pub training_data_source_id: String,
}

/// <p> Represents the output of a <code>CreateMLModel</code> operation, and is an acknowledgement that Amazon ML received the request.</p> <p>The <code>CreateMLModel</code> operation is asynchronous. You can poll for status updates by using the <code>GetMLModel</code> operation and checking the <code>Status</code> parameter. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateMLModelOutput {
    /// <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>. This value should be identical to the value of the <code>MLModelId</code> in the request. </p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateRealtimeEndpointInput {
    /// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
}

/// <p><p>Represents the output of an <code>CreateRealtimeEndpoint</code> operation.</p> <p>The result contains the <code>MLModelId</code> and the endpoint information for the <code>MLModel</code>.</p> <note> <p>The endpoint information includes the URI of the <code>MLModel</code>; that is, the location to send online prediction requests for the specified <code>MLModel</code>.</p> </note></p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateRealtimeEndpointOutput {
    /// <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>. This value should be identical to the value of the <code>MLModelId</code> in the request.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
    /// <p>The endpoint information of the <code>MLModel</code> </p>
    #[serde(rename = "RealtimeEndpointInfo")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub realtime_endpoint_info: Option<RealtimeEndpointInfo>,
}

/// <p> Represents the output of the <code>GetDataSource</code> operation. </p> <p> The content consists of the detailed metadata and data file information and the current status of the <code>DataSource</code>. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DataSource {
    /// <p> The parameter is <code>true</code> if statistics need to be generated from the observation data. </p>
    #[serde(rename = "ComputeStatistics")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_statistics: Option<bool>,
    #[serde(rename = "ComputeTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_time: Option<i64>,
    /// <p>The time that the <code>DataSource</code> was created. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p>The AWS user account from which the <code>DataSource</code> was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    #[serde(rename = "CreatedByIamUser")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_by_iam_user: Option<String>,
    /// <p>The location and name of the data in Amazon Simple Storage Service (Amazon S3) that is used by a <code>DataSource</code>.</p>
    #[serde(rename = "DataLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_location_s3: Option<String>,
    /// <p>A JSON string that represents the splitting and rearrangement requirement used when this <code>DataSource</code> was created.</p>
    #[serde(rename = "DataRearrangement")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_rearrangement: Option<String>,
    /// <p>The total number of observations contained in the data files that the <code>DataSource</code> references.</p>
    #[serde(rename = "DataSizeInBytes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_size_in_bytes: Option<i64>,
    /// <p>The ID that is assigned to the <code>DataSource</code> during creation.</p>
    #[serde(rename = "DataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_id: Option<String>,
    #[serde(rename = "FinishedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub finished_at: Option<f64>,
    /// <p>The time of the most recent edit to the <code>BatchPrediction</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "LastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_at: Option<f64>,
    /// <p>A description of the most recent details about creating the <code>DataSource</code>.</p>
    #[serde(rename = "Message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p>A user-supplied name or description of the <code>DataSource</code>.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>The number of data files referenced by the <code>DataSource</code>.</p>
    #[serde(rename = "NumberOfFiles")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub number_of_files: Option<i64>,
    #[serde(rename = "RDSMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub rds_metadata: Option<RDSMetadata>,
    #[serde(rename = "RedshiftMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub redshift_metadata: Option<RedshiftMetadata>,
    #[serde(rename = "RoleARN")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub role_arn: Option<String>,
    #[serde(rename = "StartedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub started_at: Option<f64>,
    /// <p><p>The current status of the <code>DataSource</code>. This element can have one of the following values: </p> <ul> <li>PENDING - Amazon Machine Learning (Amazon ML) submitted a request to create a <code>DataSource</code>.</li> <li>INPROGRESS - The creation process is underway.</li> <li>FAILED - The request to create a <code>DataSource</code> did not run to completion. It is not usable.</li> <li>COMPLETED - The creation process completed successfully.</li> <li>DELETED - The <code>DataSource</code> is marked as deleted. It is not usable.</li> </ul></p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteBatchPredictionInput {
    /// <p>A user-supplied ID that uniquely identifies the <code>BatchPrediction</code>.</p>
    #[serde(rename = "BatchPredictionId")]
    pub batch_prediction_id: String,
}

/// <p> Represents the output of a <code>DeleteBatchPrediction</code> operation.</p> <p>You can use the <code>GetBatchPrediction</code> operation and check the value of the <code>Status</code> parameter to see whether a <code>BatchPrediction</code> is marked as <code>DELETED</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteBatchPredictionOutput {
    /// <p>A user-supplied ID that uniquely identifies the <code>BatchPrediction</code>. This value should be identical to the value of the <code>BatchPredictionID</code> in the request.</p>
    #[serde(rename = "BatchPredictionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_prediction_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteDataSourceInput {
    /// <p>A user-supplied ID that uniquely identifies the <code>DataSource</code>.</p>
    #[serde(rename = "DataSourceId")]
    pub data_source_id: String,
}

/// <p> Represents the output of a <code>DeleteDataSource</code> operation.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteDataSourceOutput {
    /// <p>A user-supplied ID that uniquely identifies the <code>DataSource</code>. This value should be identical to the value of the <code>DataSourceID</code> in the request.</p>
    #[serde(rename = "DataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteEvaluationInput {
    /// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code> to delete.</p>
    #[serde(rename = "EvaluationId")]
    pub evaluation_id: String,
}

/// <p> Represents the output of a <code>DeleteEvaluation</code> operation. The output indicates that Amazon Machine Learning (Amazon ML) received the request.</p> <p>You can use the <code>GetEvaluation</code> operation and check the value of the <code>Status</code> parameter to see whether an <code>Evaluation</code> is marked as <code>DELETED</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteEvaluationOutput {
    /// <p>A user-supplied ID that uniquely identifies the <code>Evaluation</code>. This value should be identical to the value of the <code>EvaluationId</code> in the request.</p>
    #[serde(rename = "EvaluationId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub evaluation_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteMLModelInput {
    /// <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
}

/// <p>Represents the output of a <code>DeleteMLModel</code> operation.</p> <p>You can use the <code>GetMLModel</code> operation and check the value of the <code>Status</code> parameter to see whether an <code>MLModel</code> is marked as <code>DELETED</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteMLModelOutput {
    /// <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>. This value should be identical to the value of the <code>MLModelID</code> in the request.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteRealtimeEndpointInput {
    /// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
}

/// <p>Represents the output of an <code>DeleteRealtimeEndpoint</code> operation.</p> <p>The result contains the <code>MLModelId</code> and the endpoint information for the <code>MLModel</code>. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteRealtimeEndpointOutput {
    /// <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>. This value should be identical to the value of the <code>MLModelId</code> in the request.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
    /// <p>The endpoint information of the <code>MLModel</code> </p>
    #[serde(rename = "RealtimeEndpointInfo")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub realtime_endpoint_info: Option<RealtimeEndpointInfo>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteTagsInput {
    /// <p>The ID of the tagged ML object. For example, <code>exampleModelId</code>.</p>
    #[serde(rename = "ResourceId")]
    pub resource_id: String,
    /// <p>The type of the tagged ML object.</p>
    #[serde(rename = "ResourceType")]
    pub resource_type: String,
    /// <p>One or more tags to delete.</p>
    #[serde(rename = "TagKeys")]
    pub tag_keys: Vec<String>,
}

/// <p>Amazon ML returns the following elements. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteTagsOutput {
    /// <p>The ID of the ML object from which tags were deleted.</p>
    #[serde(rename = "ResourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_id: Option<String>,
    /// <p>The type of the ML object from which tags were deleted.</p>
    #[serde(rename = "ResourceType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_type: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeBatchPredictionsInput {
    /// <p>The equal to operator. The <code>BatchPrediction</code> results will have <code>FilterVariable</code> values that exactly match the value specified with <code>EQ</code>.</p>
    #[serde(rename = "EQ")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub eq: Option<String>,
    /// <p><p>Use one of the following variables to filter a list of <code>BatchPrediction</code>:</p> <ul> <li> <code>CreatedAt</code> - Sets the search criteria to the <code>BatchPrediction</code> creation date.</li> <li> <code>Status</code> - Sets the search criteria to the <code>BatchPrediction</code> status.</li> <li> <code>Name</code> - Sets the search criteria to the contents of the <code>BatchPrediction</code><b> </b> <code>Name</code>.</li> <li> <code>IAMUser</code> - Sets the search criteria to the user account that invoked the <code>BatchPrediction</code> creation.</li> <li> <code>MLModelId</code> - Sets the search criteria to the <code>MLModel</code> used in the <code>BatchPrediction</code>.</li> <li> <code>DataSourceId</code> - Sets the search criteria to the <code>DataSource</code> used in the <code>BatchPrediction</code>.</li> <li> <code>DataURI</code> - Sets the search criteria to the data file(s) used in the <code>BatchPrediction</code>. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.</li> </ul></p>
    #[serde(rename = "FilterVariable")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub filter_variable: Option<String>,
    /// <p>The greater than or equal to operator. The <code>BatchPrediction</code> results will have <code>FilterVariable</code> values that are greater than or equal to the value specified with <code>GE</code>. </p>
    #[serde(rename = "GE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ge: Option<String>,
    /// <p>The greater than operator. The <code>BatchPrediction</code> results will have <code>FilterVariable</code> values that are greater than the value specified with <code>GT</code>.</p>
    #[serde(rename = "GT")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub gt: Option<String>,
    /// <p>The less than or equal to operator. The <code>BatchPrediction</code> results will have <code>FilterVariable</code> values that are less than or equal to the value specified with <code>LE</code>.</p>
    #[serde(rename = "LE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub le: Option<String>,
    /// <p>The less than operator. The <code>BatchPrediction</code> results will have <code>FilterVariable</code> values that are less than the value specified with <code>LT</code>.</p>
    #[serde(rename = "LT")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lt: Option<String>,
    /// <p>The number of pages of information to include in the result. The range of acceptable values is <code>1</code> through <code>100</code>. The default value is <code>100</code>.</p>
    #[serde(rename = "Limit")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub limit: Option<i64>,
    /// <p>The not equal to operator. The <code>BatchPrediction</code> results will have <code>FilterVariable</code> values not equal to the value specified with <code>NE</code>.</p>
    #[serde(rename = "NE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ne: Option<String>,
    /// <p>An ID of the page in the paginated results.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p><p>A string that is found at the beginning of a variable, such as <code>Name</code> or <code>Id</code>.</p> <p>For example, a <code>Batch Prediction</code> operation could have the <code>Name</code> <code>2014-09-09-HolidayGiftMailer</code>. To search for this <code>BatchPrediction</code>, select <code>Name</code> for the <code>FilterVariable</code> and any of the following strings for the <code>Prefix</code>: </p> <ul> <li><p>2014-09</p></li> <li><p>2014-09-09</p></li> <li><p>2014-09-09-Holiday</p></li> </ul></p>
    #[serde(rename = "Prefix")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub prefix: Option<String>,
    /// <p>A two-value parameter that determines the sequence of the resulting list of <code>MLModel</code>s.</p> <ul> <li> <code>asc</code> - Arranges the list in ascending order (A-Z, 0-9).</li> <li> <code>dsc</code> - Arranges the list in descending order (Z-A, 9-0).</li> </ul> <p>Results are sorted by <code>FilterVariable</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

/// <p>Represents the output of a <code>DescribeBatchPredictions</code> operation. The content is essentially a list of <code>BatchPrediction</code>s.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeBatchPredictionsOutput {
    /// <p>The ID of the next page in the paginated results that indicates at least one more page follows.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>A list of <code>BatchPrediction</code> objects that meet the search criteria. </p>
    #[serde(rename = "Results")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub results: Option<Vec<BatchPrediction>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeDataSourcesInput {
    /// <p>The equal to operator. The <code>DataSource</code> results will have <code>FilterVariable</code> values that exactly match the value specified with <code>EQ</code>.</p>
    #[serde(rename = "EQ")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub eq: Option<String>,
    /// <p><p>Use one of the following variables to filter a list of <code>DataSource</code>:</p> <ul> <li> <code>CreatedAt</code> - Sets the search criteria to <code>DataSource</code> creation dates.</li> <li> <code>Status</code> - Sets the search criteria to <code>DataSource</code> statuses.</li> <li> <code>Name</code> - Sets the search criteria to the contents of <code>DataSource</code> <b> </b> <code>Name</code>.</li> <li> <code>DataUri</code> - Sets the search criteria to the URI of data files used to create the <code>DataSource</code>. The URI can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.</li> <li> <code>IAMUser</code> - Sets the search criteria to the user account that invoked the <code>DataSource</code> creation.</li> </ul></p>
    #[serde(rename = "FilterVariable")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub filter_variable: Option<String>,
    /// <p>The greater than or equal to operator. The <code>DataSource</code> results will have <code>FilterVariable</code> values that are greater than or equal to the value specified with <code>GE</code>. </p>
    #[serde(rename = "GE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ge: Option<String>,
    /// <p>The greater than operator. The <code>DataSource</code> results will have <code>FilterVariable</code> values that are greater than the value specified with <code>GT</code>.</p>
    #[serde(rename = "GT")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub gt: Option<String>,
    /// <p>The less than or equal to operator. The <code>DataSource</code> results will have <code>FilterVariable</code> values that are less than or equal to the value specified with <code>LE</code>.</p>
    #[serde(rename = "LE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub le: Option<String>,
    /// <p>The less than operator. The <code>DataSource</code> results will have <code>FilterVariable</code> values that are less than the value specified with <code>LT</code>.</p>
    #[serde(rename = "LT")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lt: Option<String>,
    /// <p> The maximum number of <code>DataSource</code> to include in the result.</p>
    #[serde(rename = "Limit")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub limit: Option<i64>,
    /// <p>The not equal to operator. The <code>DataSource</code> results will have <code>FilterVariable</code> values not equal to the value specified with <code>NE</code>.</p>
    #[serde(rename = "NE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ne: Option<String>,
    /// <p>The ID of the page in the paginated results.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p><p>A string that is found at the beginning of a variable, such as <code>Name</code> or <code>Id</code>.</p> <p>For example, a <code>DataSource</code> could have the <code>Name</code> <code>2014-09-09-HolidayGiftMailer</code>. To search for this <code>DataSource</code>, select <code>Name</code> for the <code>FilterVariable</code> and any of the following strings for the <code>Prefix</code>: </p> <ul> <li><p>2014-09</p></li> <li><p>2014-09-09</p></li> <li><p>2014-09-09-Holiday</p></li> </ul></p>
    #[serde(rename = "Prefix")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub prefix: Option<String>,
    /// <p>A two-value parameter that determines the sequence of the resulting list of <code>DataSource</code>.</p> <ul> <li> <code>asc</code> - Arranges the list in ascending order (A-Z, 0-9).</li> <li> <code>dsc</code> - Arranges the list in descending order (Z-A, 9-0).</li> </ul> <p>Results are sorted by <code>FilterVariable</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

/// <p>Represents the query results from a <a>DescribeDataSources</a> operation. The content is essentially a list of <code>DataSource</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeDataSourcesOutput {
    /// <p>An ID of the next page in the paginated results that indicates at least one more page follows.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>A list of <code>DataSource</code> that meet the search criteria. </p>
    #[serde(rename = "Results")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub results: Option<Vec<DataSource>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeEvaluationsInput {
    /// <p>The equal to operator. The <code>Evaluation</code> results will have <code>FilterVariable</code> values that exactly match the value specified with <code>EQ</code>.</p>
    #[serde(rename = "EQ")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub eq: Option<String>,
    /// <p><p>Use one of the following variable to filter a list of <code>Evaluation</code> objects:</p> <ul> <li> <code>CreatedAt</code> - Sets the search criteria to the <code>Evaluation</code> creation date.</li> <li> <code>Status</code> - Sets the search criteria to the <code>Evaluation</code> status.</li> <li> <code>Name</code> - Sets the search criteria to the contents of <code>Evaluation</code> <b> </b> <code>Name</code>.</li> <li> <code>IAMUser</code> - Sets the search criteria to the user account that invoked an <code>Evaluation</code>.</li> <li> <code>MLModelId</code> - Sets the search criteria to the <code>MLModel</code> that was evaluated.</li> <li> <code>DataSourceId</code> - Sets the search criteria to the <code>DataSource</code> used in <code>Evaluation</code>.</li> <li> <code>DataUri</code> - Sets the search criteria to the data file(s) used in <code>Evaluation</code>. The URL can identify either a file or an Amazon Simple Storage Solution (Amazon S3) bucket or directory.</li> </ul></p>
    #[serde(rename = "FilterVariable")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub filter_variable: Option<String>,
    /// <p>The greater than or equal to operator. The <code>Evaluation</code> results will have <code>FilterVariable</code> values that are greater than or equal to the value specified with <code>GE</code>. </p>
    #[serde(rename = "GE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ge: Option<String>,
    /// <p>The greater than operator. The <code>Evaluation</code> results will have <code>FilterVariable</code> values that are greater than the value specified with <code>GT</code>.</p>
    #[serde(rename = "GT")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub gt: Option<String>,
    /// <p>The less than or equal to operator. The <code>Evaluation</code> results will have <code>FilterVariable</code> values that are less than or equal to the value specified with <code>LE</code>.</p>
    #[serde(rename = "LE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub le: Option<String>,
    /// <p>The less than operator. The <code>Evaluation</code> results will have <code>FilterVariable</code> values that are less than the value specified with <code>LT</code>.</p>
    #[serde(rename = "LT")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lt: Option<String>,
    /// <p> The maximum number of <code>Evaluation</code> to include in the result.</p>
    #[serde(rename = "Limit")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub limit: Option<i64>,
    /// <p>The not equal to operator. The <code>Evaluation</code> results will have <code>FilterVariable</code> values not equal to the value specified with <code>NE</code>.</p>
    #[serde(rename = "NE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ne: Option<String>,
    /// <p>The ID of the page in the paginated results.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p><p>A string that is found at the beginning of a variable, such as <code>Name</code> or <code>Id</code>.</p> <p>For example, an <code>Evaluation</code> could have the <code>Name</code> <code>2014-09-09-HolidayGiftMailer</code>. To search for this <code>Evaluation</code>, select <code>Name</code> for the <code>FilterVariable</code> and any of the following strings for the <code>Prefix</code>: </p> <ul> <li><p>2014-09</p></li> <li><p>2014-09-09</p></li> <li><p>2014-09-09-Holiday</p></li> </ul></p>
    #[serde(rename = "Prefix")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub prefix: Option<String>,
    /// <p>A two-value parameter that determines the sequence of the resulting list of <code>Evaluation</code>.</p> <ul> <li> <code>asc</code> - Arranges the list in ascending order (A-Z, 0-9).</li> <li> <code>dsc</code> - Arranges the list in descending order (Z-A, 9-0).</li> </ul> <p>Results are sorted by <code>FilterVariable</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

/// <p>Represents the query results from a <code>DescribeEvaluations</code> operation. The content is essentially a list of <code>Evaluation</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeEvaluationsOutput {
    /// <p>The ID of the next page in the paginated results that indicates at least one more page follows.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>A list of <code>Evaluation</code> that meet the search criteria. </p>
    #[serde(rename = "Results")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub results: Option<Vec<Evaluation>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeMLModelsInput {
    /// <p>The equal to operator. The <code>MLModel</code> results will have <code>FilterVariable</code> values that exactly match the value specified with <code>EQ</code>.</p>
    #[serde(rename = "EQ")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub eq: Option<String>,
    /// <p><p>Use one of the following variables to filter a list of <code>MLModel</code>:</p> <ul> <li> <code>CreatedAt</code> - Sets the search criteria to <code>MLModel</code> creation date.</li> <li> <code>Status</code> - Sets the search criteria to <code>MLModel</code> status.</li> <li> <code>Name</code> - Sets the search criteria to the contents of <code>MLModel</code><b> </b> <code>Name</code>.</li> <li> <code>IAMUser</code> - Sets the search criteria to the user account that invoked the <code>MLModel</code> creation.</li> <li> <code>TrainingDataSourceId</code> - Sets the search criteria to the <code>DataSource</code> used to train one or more <code>MLModel</code>.</li> <li> <code>RealtimeEndpointStatus</code> - Sets the search criteria to the <code>MLModel</code> real-time endpoint status.</li> <li> <code>MLModelType</code> - Sets the search criteria to <code>MLModel</code> type: binary, regression, or multi-class.</li> <li> <code>Algorithm</code> - Sets the search criteria to the algorithm that the <code>MLModel</code> uses.</li> <li> <code>TrainingDataURI</code> - Sets the search criteria to the data file(s) used in training a <code>MLModel</code>. The URL can identify either a file or an Amazon Simple Storage Service (Amazon S3) bucket or directory.</li> </ul></p>
    #[serde(rename = "FilterVariable")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub filter_variable: Option<String>,
    /// <p>The greater than or equal to operator. The <code>MLModel</code> results will have <code>FilterVariable</code> values that are greater than or equal to the value specified with <code>GE</code>. </p>
    #[serde(rename = "GE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ge: Option<String>,
    /// <p>The greater than operator. The <code>MLModel</code> results will have <code>FilterVariable</code> values that are greater than the value specified with <code>GT</code>.</p>
    #[serde(rename = "GT")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub gt: Option<String>,
    /// <p>The less than or equal to operator. The <code>MLModel</code> results will have <code>FilterVariable</code> values that are less than or equal to the value specified with <code>LE</code>.</p>
    #[serde(rename = "LE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub le: Option<String>,
    /// <p>The less than operator. The <code>MLModel</code> results will have <code>FilterVariable</code> values that are less than the value specified with <code>LT</code>.</p>
    #[serde(rename = "LT")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lt: Option<String>,
    /// <p>The number of pages of information to include in the result. The range of acceptable values is <code>1</code> through <code>100</code>. The default value is <code>100</code>.</p>
    #[serde(rename = "Limit")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub limit: Option<i64>,
    /// <p>The not equal to operator. The <code>MLModel</code> results will have <code>FilterVariable</code> values not equal to the value specified with <code>NE</code>.</p>
    #[serde(rename = "NE")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ne: Option<String>,
    /// <p>The ID of the page in the paginated results.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p><p>A string that is found at the beginning of a variable, such as <code>Name</code> or <code>Id</code>.</p> <p>For example, an <code>MLModel</code> could have the <code>Name</code> <code>2014-09-09-HolidayGiftMailer</code>. To search for this <code>MLModel</code>, select <code>Name</code> for the <code>FilterVariable</code> and any of the following strings for the <code>Prefix</code>: </p> <ul> <li><p>2014-09</p></li> <li><p>2014-09-09</p></li> <li><p>2014-09-09-Holiday</p></li> </ul></p>
    #[serde(rename = "Prefix")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub prefix: Option<String>,
    /// <p>A two-value parameter that determines the sequence of the resulting list of <code>MLModel</code>.</p> <ul> <li> <code>asc</code> - Arranges the list in ascending order (A-Z, 0-9).</li> <li> <code>dsc</code> - Arranges the list in descending order (Z-A, 9-0).</li> </ul> <p>Results are sorted by <code>FilterVariable</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

/// <p>Represents the output of a <code>DescribeMLModels</code> operation. The content is essentially a list of <code>MLModel</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeMLModelsOutput {
    /// <p>The ID of the next page in the paginated results that indicates at least one more page follows.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>A list of <code>MLModel</code> that meet the search criteria.</p>
    #[serde(rename = "Results")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub results: Option<Vec<MLModel>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeTagsInput {
    /// <p>The ID of the ML object. For example, <code>exampleModelId</code>. </p>
    #[serde(rename = "ResourceId")]
    pub resource_id: String,
    /// <p>The type of the ML object.</p>
    #[serde(rename = "ResourceType")]
    pub resource_type: String,
}

/// <p>Amazon ML returns the following elements. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeTagsOutput {
    /// <p>The ID of the tagged ML object.</p>
    #[serde(rename = "ResourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_id: Option<String>,
    /// <p>The type of the tagged ML object.</p>
    #[serde(rename = "ResourceType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_type: Option<String>,
    /// <p>A list of tags associated with the ML object.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
}

/// <p> Represents the output of <code>GetEvaluation</code> operation. </p> <p>The content consists of the detailed metadata and data file information and the current status of the <code>Evaluation</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Evaluation {
    #[serde(rename = "ComputeTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_time: Option<i64>,
    /// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    #[serde(rename = "CreatedByIamUser")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_by_iam_user: Option<String>,
    /// <p>The ID of the <code>DataSource</code> that is used to evaluate the <code>MLModel</code>.</p>
    #[serde(rename = "EvaluationDataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub evaluation_data_source_id: Option<String>,
    /// <p>The ID that is assigned to the <code>Evaluation</code> at creation.</p>
    #[serde(rename = "EvaluationId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub evaluation_id: Option<String>,
    #[serde(rename = "FinishedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub finished_at: Option<f64>,
    /// <p>The location and name of the data in Amazon Simple Storage Server (Amazon S3) that is used in the evaluation.</p>
    #[serde(rename = "InputDataLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_location_s3: Option<String>,
    /// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "LastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_at: Option<f64>,
    /// <p>The ID of the <code>MLModel</code> that is the focus of the evaluation.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
    /// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
    #[serde(rename = "Message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p>A user-supplied name or description of the <code>Evaluation</code>. </p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>Measurements of how well the <code>MLModel</code> performed, using observations referenced by the <code>DataSource</code>. One of the following metrics is returned, based on the type of the <code>MLModel</code>: </p> <ul> <li> <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance. </p> </li> <li> <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p> </li> <li> <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance. </p> </li> </ul> <p> For more information about performance metrics, please see the <a href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>. </p>
    #[serde(rename = "PerformanceMetrics")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub performance_metrics: Option<PerformanceMetrics>,
    #[serde(rename = "StartedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub started_at: Option<f64>,
    /// <p><p>The status of the evaluation. This element can have one of the following values:</p> <ul> <li> <code>PENDING</code> - Amazon Machine Learning (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</li> <li> <code>INPROGRESS</code> - The evaluation is underway.</li> <li> <code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</li> <li> <code>COMPLETED</code> - The evaluation process completed successfully.</li> <li> <code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</li> </ul></p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetBatchPredictionInput {
    /// <p>An ID assigned to the <code>BatchPrediction</code> at creation.</p>
    #[serde(rename = "BatchPredictionId")]
    pub batch_prediction_id: String,
}

/// <p>Represents the output of a <code>GetBatchPrediction</code> operation and describes a <code>BatchPrediction</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetBatchPredictionOutput {
    /// <p>The ID of the <code>DataSource</code> that was used to create the <code>BatchPrediction</code>. </p>
    #[serde(rename = "BatchPredictionDataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_prediction_data_source_id: Option<String>,
    /// <p>An ID assigned to the <code>BatchPrediction</code> at creation. This value should be identical to the value of the <code>BatchPredictionID</code> in the request.</p>
    #[serde(rename = "BatchPredictionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_prediction_id: Option<String>,
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>BatchPrediction</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>BatchPrediction</code> is in the <code>COMPLETED</code> state.</p>
    #[serde(rename = "ComputeTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_time: Option<i64>,
    /// <p>The time when the <code>BatchPrediction</code> was created. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p>The AWS user account that invoked the <code>BatchPrediction</code>. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    #[serde(rename = "CreatedByIamUser")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_by_iam_user: Option<String>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>BatchPrediction</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>BatchPrediction</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    #[serde(rename = "FinishedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub finished_at: Option<f64>,
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    #[serde(rename = "InputDataLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_location_s3: Option<String>,
    /// <p>The number of invalid records that Amazon Machine Learning saw while processing the <code>BatchPrediction</code>.</p>
    #[serde(rename = "InvalidRecordCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub invalid_record_count: Option<i64>,
    /// <p>The time of the most recent edit to <code>BatchPrediction</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "LastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_at: Option<f64>,
    /// <p>A link to the file that contains logs of the <code>CreateBatchPrediction</code> operation.</p>
    #[serde(rename = "LogUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub log_uri: Option<String>,
    /// <p>The ID of the <code>MLModel</code> that generated predictions for the <code>BatchPrediction</code> request.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
    /// <p>A description of the most recent details about processing the batch prediction request.</p>
    #[serde(rename = "Message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p>A user-supplied name or description of the <code>BatchPrediction</code>.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>The location of an Amazon S3 bucket or directory to receive the operation results.</p>
    #[serde(rename = "OutputUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub output_uri: Option<String>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>BatchPrediction</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>BatchPrediction</code> is in the <code>PENDING</code> state.</p>
    #[serde(rename = "StartedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub started_at: Option<f64>,
    /// <p><p>The status of the <code>BatchPrediction</code>, which can be one of the following values:</p> <ul> <li> <code>PENDING</code> - Amazon Machine Learning (Amazon ML) submitted a request to generate batch predictions.</li> <li> <code>INPROGRESS</code> - The batch predictions are in progress.</li> <li> <code>FAILED</code> - The request to perform a batch prediction did not run to completion. It is not usable.</li> <li> <code>COMPLETED</code> - The batch prediction process completed successfully.</li> <li> <code>DELETED</code> - The <code>BatchPrediction</code> is marked as deleted. It is not usable.</li> </ul></p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
    /// <p>The number of total records that Amazon Machine Learning saw while processing the <code>BatchPrediction</code>.</p>
    #[serde(rename = "TotalRecordCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub total_record_count: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetDataSourceInput {
    /// <p>The ID assigned to the <code>DataSource</code> at creation.</p>
    #[serde(rename = "DataSourceId")]
    pub data_source_id: String,
    /// <p>Specifies whether the <code>GetDataSource</code> operation should return <code>DataSourceSchema</code>.</p> <p>If true, <code>DataSourceSchema</code> is returned.</p> <p>If false, <code>DataSourceSchema</code> is not returned.</p>
    #[serde(rename = "Verbose")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub verbose: Option<bool>,
}

/// <p>Represents the output of a <code>GetDataSource</code> operation and describes a <code>DataSource</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetDataSourceOutput {
    /// <p> The parameter is <code>true</code> if statistics need to be generated from the observation data. </p>
    #[serde(rename = "ComputeStatistics")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_statistics: Option<bool>,
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>DataSource</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>DataSource</code> is in the <code>COMPLETED</code> state and the <code>ComputeStatistics</code> is set to true.</p>
    #[serde(rename = "ComputeTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_time: Option<i64>,
    /// <p>The time that the <code>DataSource</code> was created. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p>The AWS user account from which the <code>DataSource</code> was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    #[serde(rename = "CreatedByIamUser")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_by_iam_user: Option<String>,
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    #[serde(rename = "DataLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_location_s3: Option<String>,
    /// <p>A JSON string that represents the splitting and rearrangement requirement used when this <code>DataSource</code> was created.</p>
    #[serde(rename = "DataRearrangement")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_rearrangement: Option<String>,
    /// <p>The total size of observations in the data files.</p>
    #[serde(rename = "DataSizeInBytes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_size_in_bytes: Option<i64>,
    /// <p>The ID assigned to the <code>DataSource</code> at creation. This value should be identical to the value of the <code>DataSourceId</code> in the request.</p>
    #[serde(rename = "DataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_id: Option<String>,
    /// <p><p>The schema used by all of the data files of this <code>DataSource</code>.</p> <note><title>Note</title> <p>This parameter is provided as part of the verbose format.</p></note></p>
    #[serde(rename = "DataSourceSchema")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_schema: Option<String>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>DataSource</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>DataSource</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    #[serde(rename = "FinishedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub finished_at: Option<f64>,
    /// <p>The time of the most recent edit to the <code>DataSource</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "LastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_at: Option<f64>,
    /// <p>A link to the file containing logs of <code>CreateDataSourceFrom*</code> operations.</p>
    #[serde(rename = "LogUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub log_uri: Option<String>,
    /// <p>The user-supplied description of the most recent details about creating the <code>DataSource</code>.</p>
    #[serde(rename = "Message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p>A user-supplied name or description of the <code>DataSource</code>.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>The number of data files referenced by the <code>DataSource</code>.</p>
    #[serde(rename = "NumberOfFiles")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub number_of_files: Option<i64>,
    #[serde(rename = "RDSMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub rds_metadata: Option<RDSMetadata>,
    #[serde(rename = "RedshiftMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub redshift_metadata: Option<RedshiftMetadata>,
    #[serde(rename = "RoleARN")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub role_arn: Option<String>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>DataSource</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>DataSource</code> is in the <code>PENDING</code> state.</p>
    #[serde(rename = "StartedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub started_at: Option<f64>,
    /// <p><p>The current status of the <code>DataSource</code>. This element can have one of the following values:</p> <ul> <li> <code>PENDING</code> - Amazon ML submitted a request to create a <code>DataSource</code>.</li> <li> <code>INPROGRESS</code> - The creation process is underway.</li> <li> <code>FAILED</code> - The request to create a <code>DataSource</code> did not run to completion. It is not usable.</li> <li> <code>COMPLETED</code> - The creation process completed successfully.</li> <li> <code>DELETED</code> - The <code>DataSource</code> is marked as deleted. It is not usable.</li> </ul></p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetEvaluationInput {
    /// <p>The ID of the <code>Evaluation</code> to retrieve. The evaluation of each <code>MLModel</code> is recorded and cataloged. The ID provides the means to access the information. </p>
    #[serde(rename = "EvaluationId")]
    pub evaluation_id: String,
}

/// <p>Represents the output of a <code>GetEvaluation</code> operation and describes an <code>Evaluation</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetEvaluationOutput {
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>Evaluation</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>Evaluation</code> is in the <code>COMPLETED</code> state.</p>
    #[serde(rename = "ComputeTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_time: Option<i64>,
    /// <p>The time that the <code>Evaluation</code> was created. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p>The AWS user account that invoked the evaluation. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    #[serde(rename = "CreatedByIamUser")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_by_iam_user: Option<String>,
    /// <p>The <code>DataSource</code> used for this evaluation.</p>
    #[serde(rename = "EvaluationDataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub evaluation_data_source_id: Option<String>,
    /// <p>The evaluation ID which is same as the <code>EvaluationId</code> in the request.</p>
    #[serde(rename = "EvaluationId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub evaluation_id: Option<String>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>Evaluation</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    #[serde(rename = "FinishedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub finished_at: Option<f64>,
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    #[serde(rename = "InputDataLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_location_s3: Option<String>,
    /// <p>The time of the most recent edit to the <code>Evaluation</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "LastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_at: Option<f64>,
    /// <p>A link to the file that contains logs of the <code>CreateEvaluation</code> operation.</p>
    #[serde(rename = "LogUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub log_uri: Option<String>,
    /// <p>The ID of the <code>MLModel</code> that was the focus of the evaluation.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
    /// <p>A description of the most recent details about evaluating the <code>MLModel</code>.</p>
    #[serde(rename = "Message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p>A user-supplied name or description of the <code>Evaluation</code>. </p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>Measurements of how well the <code>MLModel</code> performed using observations referenced by the <code>DataSource</code>. One of the following metric is returned based on the type of the <code>MLModel</code>: </p> <ul> <li> <p>BinaryAUC: A binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance. </p> </li> <li> <p>RegressionRMSE: A regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p> </li> <li> <p>MulticlassAvgFScore: A multiclass <code>MLModel</code> uses the F1 score technique to measure performance. </p> </li> </ul> <p> For more information about performance metrics, please see the <a href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>. </p>
    #[serde(rename = "PerformanceMetrics")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub performance_metrics: Option<PerformanceMetrics>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>Evaluation</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>Evaluation</code> is in the <code>PENDING</code> state.</p>
    #[serde(rename = "StartedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub started_at: Option<f64>,
    /// <p><p>The status of the evaluation. This element can have one of the following values:</p> <ul> <li> <code>PENDING</code> - Amazon Machine Language (Amazon ML) submitted a request to evaluate an <code>MLModel</code>.</li> <li> <code>INPROGRESS</code> - The evaluation is underway.</li> <li> <code>FAILED</code> - The request to evaluate an <code>MLModel</code> did not run to completion. It is not usable.</li> <li> <code>COMPLETED</code> - The evaluation process completed successfully.</li> <li> <code>DELETED</code> - The <code>Evaluation</code> is marked as deleted. It is not usable.</li> </ul></p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetMLModelInput {
    /// <p>The ID assigned to the <code>MLModel</code> at creation.</p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
    /// <p>Specifies whether the <code>GetMLModel</code> operation should return <code>Recipe</code>.</p> <p>If true, <code>Recipe</code> is returned.</p> <p>If false, <code>Recipe</code> is not returned.</p>
    #[serde(rename = "Verbose")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub verbose: Option<bool>,
}

/// <p>Represents the output of a <code>GetMLModel</code> operation, and provides detailed information about a <code>MLModel</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetMLModelOutput {
    /// <p>The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the <code>MLModel</code>, normalized and scaled on computation resources. <code>ComputeTime</code> is only available if the <code>MLModel</code> is in the <code>COMPLETED</code> state.</p>
    #[serde(rename = "ComputeTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_time: Option<i64>,
    /// <p>The time that the <code>MLModel</code> was created. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p>The AWS user account from which the <code>MLModel</code> was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    #[serde(rename = "CreatedByIamUser")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_by_iam_user: Option<String>,
    /// <p>The current endpoint of the <code>MLModel</code></p>
    #[serde(rename = "EndpointInfo")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub endpoint_info: Option<RealtimeEndpointInfo>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>MLModel</code> as <code>COMPLETED</code> or <code>FAILED</code>. <code>FinishedAt</code> is only available when the <code>MLModel</code> is in the <code>COMPLETED</code> or <code>FAILED</code> state.</p>
    #[serde(rename = "FinishedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub finished_at: Option<f64>,
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    #[serde(rename = "InputDataLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_location_s3: Option<String>,
    /// <p>The time of the most recent edit to the <code>MLModel</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "LastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_at: Option<f64>,
    /// <p>A link to the file that contains logs of the <code>CreateMLModel</code> operation.</p>
    #[serde(rename = "LogUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub log_uri: Option<String>,
    /// <p>The MLModel ID<?oxy_insert_start author="annbech" timestamp="20160328T151251-0700">,<?oxy_insert_end> which is same as the <code>MLModelId</code> in the request.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
    /// <p><p>Identifies the <code>MLModel</code> category. The following are the available types: </p> <ul> <li>REGRESSION -- Produces a numeric result. For example, &quot;What price should a house be listed at?&quot;</li> <li>BINARY -- Produces one of two possible results. For example, &quot;Is this an e-commerce website?&quot;</li> <li>MULTICLASS -- Produces one of several possible results. For example, &quot;Is this a HIGH, LOW or MEDIUM risk trade?&quot;</li> </ul></p>
    #[serde(rename = "MLModelType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_type: Option<String>,
    /// <p>A description of the most recent details about accessing the <code>MLModel</code>.</p>
    #[serde(rename = "Message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p><p>The recipe to use when training the <code>MLModel</code>. The <code>Recipe</code> provides detailed information about the observation data to use during training, and manipulations to perform on the observation data during training.</p> <note><title>Note</title> <p>This parameter is provided as part of the verbose format.</p></note></p>
    #[serde(rename = "Recipe")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub recipe: Option<String>,
    /// <p><p>The schema used by all of the data files referenced by the <code>DataSource</code>.</p> <note><title>Note</title> <p>This parameter is provided as part of the verbose format.</p></note></p>
    #[serde(rename = "Schema")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub schema: Option<String>,
    /// <p>The scoring threshold is used in binary classification <code>MLModel</code><?oxy_insert_start author="laurama" timestamp="20160329T114851-0700"> <?oxy_insert_end>models. It marks the boundary between a positive prediction and a negative prediction.</p> <p>Output values greater than or equal to the threshold receive a positive result from the MLModel, such as <code>true</code>. Output values less than the threshold receive a negative response from the MLModel, such as <code>false</code>.</p>
    #[serde(rename = "ScoreThreshold")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub score_threshold: Option<f32>,
    /// <p>The time of the most recent edit to the <code>ScoreThreshold</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "ScoreThresholdLastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub score_threshold_last_updated_at: Option<f64>,
    #[serde(rename = "SizeInBytes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub size_in_bytes: Option<i64>,
    /// <p>The epoch time when Amazon Machine Learning marked the <code>MLModel</code> as <code>INPROGRESS</code>. <code>StartedAt</code> isn't available if the <code>MLModel</code> is in the <code>PENDING</code> state.</p>
    #[serde(rename = "StartedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub started_at: Option<f64>,
    /// <p><p>The current status of the <code>MLModel</code>. This element can have one of the following values:</p> <ul> <li> <code>PENDING</code> - Amazon Machine Learning (Amazon ML) submitted a request to describe a <code>MLModel</code>.</li> <li> <code>INPROGRESS</code> - The request is processing.</li> <li> <code>FAILED</code> - The request did not run to completion. The ML model isn&#39;t usable.</li> <li> <code>COMPLETED</code> - The request completed successfully.</li> <li> <code>DELETED</code> - The <code>MLModel</code> is marked as deleted. It isn&#39;t usable.</li> </ul></p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
    /// <p>The ID of the training <code>DataSource</code>.</p>
    #[serde(rename = "TrainingDataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_data_source_id: Option<String>,
    /// <p><p>A list of the training parameters in the <code>MLModel</code>. The list is implemented as a map of key-value pairs.</p> <p>The following is the current set of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code> - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.</p> <p> The value is an integer that ranges from <code>100000</code> to <code>2147483648</code>. The default value is <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number of times that the training process traverses the observations to build the <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to <code>10000</code>. The default value is <code>10</code>.</p></li> <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data. Shuffling data improves a model&#39;s ability to find the optimal solution for a variety of data types. The valid values are <code>auto</code> and <code>none</code>. The default value is <code>none</code>. We strongly recommend that you shuffle your data.</p></li> <li> <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The value is a double that ranges from <code>0</code> to <code>MAX<em>DOUBLE</code>. The default is to not use L1 normalization. This parameter can&#39;t be used when <code>L2</code> is specified. Use this parameter sparingly.</p> </li> <li> <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The value is a double that ranges from <code>0</code> to <code>MAX</em>DOUBLE</code>. The default is to not use L2 normalization. This parameter can&#39;t be used when <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul></p>
    #[serde(rename = "TrainingParameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_parameters: Option<::std::collections::HashMap<String, String>>,
}

/// <p> Represents the output of a <code>GetMLModel</code> operation. </p> <p>The content consists of the detailed metadata and the current status of the <code>MLModel</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct MLModel {
    /// <p><p>The algorithm used to train the <code>MLModel</code>. The following algorithm is supported:</p> <ul> <li> <code>SGD</code> -- Stochastic gradient descent. The goal of <code>SGD</code> is to minimize the gradient of the loss function. </li> </ul></p>
    #[serde(rename = "Algorithm")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub algorithm: Option<String>,
    #[serde(rename = "ComputeTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compute_time: Option<i64>,
    /// <p>The time that the <code>MLModel</code> was created. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p>The AWS user account from which the <code>MLModel</code> was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.</p>
    #[serde(rename = "CreatedByIamUser")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_by_iam_user: Option<String>,
    /// <p>The current endpoint of the <code>MLModel</code>.</p>
    #[serde(rename = "EndpointInfo")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub endpoint_info: Option<RealtimeEndpointInfo>,
    #[serde(rename = "FinishedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub finished_at: Option<f64>,
    /// <p>The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).</p>
    #[serde(rename = "InputDataLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_location_s3: Option<String>,
    /// <p>The time of the most recent edit to the <code>MLModel</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "LastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_at: Option<f64>,
    /// <p>The ID assigned to the <code>MLModel</code> at creation.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
    /// <p><p>Identifies the <code>MLModel</code> category. The following are the available types:</p> <ul> <li> <code>REGRESSION</code> - Produces a numeric result. For example, &quot;What price should a house be listed at?&quot;</li> <li> <code>BINARY</code> - Produces one of two possible results. For example, &quot;Is this a child-friendly web site?&quot;.</li> <li> <code>MULTICLASS</code> - Produces one of several possible results. For example, &quot;Is this a HIGH-, LOW-, or MEDIUM&lt;?oxy<em>delete author=&quot;annbech&quot; timestamp=&quot;20160328T175050-0700&quot; content=&quot; &quot;&gt;&lt;?oxy</em>insert<em>start author=&quot;annbech&quot; timestamp=&quot;20160328T175050-0700&quot;&gt;-&lt;?oxy</em>insert_end&gt;risk trade?&quot;.</li> </ul></p>
    #[serde(rename = "MLModelType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_type: Option<String>,
    /// <p>A description of the most recent details about accessing the <code>MLModel</code>.</p>
    #[serde(rename = "Message")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub message: Option<String>,
    /// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    #[serde(rename = "ScoreThreshold")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub score_threshold: Option<f32>,
    /// <p>The time of the most recent edit to the <code>ScoreThreshold</code>. The time is expressed in epoch time.</p>
    #[serde(rename = "ScoreThresholdLastUpdatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub score_threshold_last_updated_at: Option<f64>,
    #[serde(rename = "SizeInBytes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub size_in_bytes: Option<i64>,
    #[serde(rename = "StartedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub started_at: Option<f64>,
    /// <p><p>The current status of an <code>MLModel</code>. This element can have one of the following values: </p> <ul> <li> <code>PENDING</code> - Amazon Machine Learning (Amazon ML) submitted a request to create an <code>MLModel</code>.</li> <li> <code>INPROGRESS</code> - The creation process is underway.</li> <li> <code>FAILED</code> - The request to create an <code>MLModel</code> didn&#39;t run to completion. The model isn&#39;t usable.</li> <li> <code>COMPLETED</code> - The creation process completed successfully.</li> <li> <code>DELETED</code> - The <code>MLModel</code> is marked as deleted. It isn&#39;t usable.</li> </ul></p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
    /// <p>The ID of the training <code>DataSource</code>. The <code>CreateMLModel</code> operation uses the <code>TrainingDataSourceId</code>.</p>
    #[serde(rename = "TrainingDataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_data_source_id: Option<String>,
    /// <p><p>A list of the training parameters in the <code>MLModel</code>. The list is implemented as a map of key-value pairs.</p> <p>The following is the current set of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code> - The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.</p> <p> The value is an integer that ranges from <code>100000</code> to <code>2147483648</code>. The default value is <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number of times that the training process traverses the observations to build the <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to <code>10000</code>. The default value is <code>10</code>.</p></li> <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data. Shuffling the data improves a model&#39;s ability to find the optimal solution for a variety of data types. The valid values are <code>auto</code> and <code>none</code>. The default value is <code>none</code>.</p></li> <li> <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1 norm, which controls overfitting the data by penalizing large coefficients. This parameter tends to drive coefficients to zero, resulting in sparse feature set. If you use this parameter, start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The value is a double that ranges from <code>0</code> to <code>MAX<em>DOUBLE</code>. The default is to not use L1 normalization. This parameter can&#39;t be used when <code>L2</code> is specified. Use this parameter sparingly.</p> </li> <li> <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2 norm, which controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The value is a double that ranges from <code>0</code> to <code>MAX</em>DOUBLE</code>. The default is to not use L2 normalization. This parameter can&#39;t be used when <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul></p>
    #[serde(rename = "TrainingParameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_parameters: Option<::std::collections::HashMap<String, String>>,
}

/// <p>Measurements of how well the <code>MLModel</code> performed on known observations. One of the following metrics is returned, based on the type of the <code>MLModel</code>: </p> <ul> <li> <p>BinaryAUC: The binary <code>MLModel</code> uses the Area Under the Curve (AUC) technique to measure performance. </p> </li> <li> <p>RegressionRMSE: The regression <code>MLModel</code> uses the Root Mean Square Error (RMSE) technique to measure performance. RMSE measures the difference between predicted and actual values for a single variable.</p> </li> <li> <p>MulticlassAvgFScore: The multiclass <code>MLModel</code> uses the F1 score technique to measure performance. </p> </li> </ul> <p> For more information about performance metrics, please see the <a href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine Learning Developer Guide</a>. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct PerformanceMetrics {
    #[serde(rename = "Properties")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub properties: Option<::std::collections::HashMap<String, String>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct PredictInput {
    /// <p>A unique identifier of the <code>MLModel</code>.</p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
    #[serde(rename = "PredictEndpoint")]
    pub predict_endpoint: String,
    #[serde(rename = "Record")]
    pub record: ::std::collections::HashMap<String, String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct PredictOutput {
    #[serde(rename = "Prediction")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub prediction: Option<Prediction>,
}

/// <p><p>The output from a <code>Predict</code> operation: </p> <ul> <li> <p> <code>Details</code> - Contains the following attributes: <code>DetailsAttributes.PREDICTIVE<em>MODEL</em>TYPE - REGRESSION | BINARY | MULTICLASS</code> <code>DetailsAttributes.ALGORITHM - SGD</code> </p> </li> <li> <p> <code>PredictedLabel</code> - Present for either a <code>BINARY</code> or <code>MULTICLASS</code> <code>MLModel</code> request. </p> </li> <li> <p> <code>PredictedScores</code> - Contains the raw classification score corresponding to each label. </p> </li> <li> <p> <code>PredictedValue</code> - Present for a <code>REGRESSION</code> <code>MLModel</code> request. </p> </li> </ul></p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Prediction {
    #[serde(rename = "details")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<::std::collections::HashMap<String, String>>,
    /// <p>The prediction label for either a <code>BINARY</code> or <code>MULTICLASS</code> <code>MLModel</code>.</p>
    #[serde(rename = "predictedLabel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub predicted_label: Option<String>,
    #[serde(rename = "predictedScores")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub predicted_scores: Option<::std::collections::HashMap<String, f32>>,
    /// <p>The prediction value for <code>REGRESSION</code> <code>MLModel</code>.</p>
    #[serde(rename = "predictedValue")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub predicted_value: Option<f32>,
}

/// <p>The data specification of an Amazon Relational Database Service (Amazon RDS) <code>DataSource</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct RDSDataSpec {
    /// <p><p>A JSON string that represents the splitting and rearrangement processing to be applied to a <code>DataSource</code>. If the <code>DataRearrangement</code> parameter is not provided, all of the input data is used to create the <code>Datasource</code>.</p> <p>There are multiple parameters that control what data is used to create a datasource:</p> <ul> <li><p><b><code>percentBegin</code></b></p> <p>Use <code>percentBegin</code> to indicate the beginning of the range of the data used to create the Datasource. If you do not include <code>percentBegin</code> and <code>percentEnd</code>, Amazon ML includes all of the data when creating the datasource.</p></li> <li><p><b><code>percentEnd</code></b></p> <p>Use <code>percentEnd</code> to indicate the end of the range of the data used to create the Datasource. If you do not include <code>percentBegin</code> and <code>percentEnd</code>, Amazon ML includes all of the data when creating the datasource.</p></li> <li><p><b><code>complement</code></b></p> <p>The <code>complement</code> parameter instructs Amazon ML to use the data that is not included in the range of <code>percentBegin</code> to <code>percentEnd</code> to create a datasource. The <code>complement</code> parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for <code>percentBegin</code> and <code>percentEnd</code>, along with the <code>complement</code> parameter.</p> <p>For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:0, &quot;percentEnd&quot;:25}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:0, &quot;percentEnd&quot;:25, &quot;complement&quot;:&quot;true&quot;}}</code></p> </li> <li><p><b><code>strategy</code></b></p> <p>To change how Amazon ML splits the data for a datasource, use the <code>strategy</code> parameter.</p> <p>The default value for the <code>strategy</code> parameter is <code>sequential</code>, meaning that Amazon ML takes all of the data records between the <code>percentBegin</code> and <code>percentEnd</code> parameters for the datasource, in the order that the records appear in the input data.</p> <p>The following two <code>DataRearrangement</code> lines are examples of sequentially ordered training and evaluation datasources:</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;sequential&quot;}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;sequential&quot;, &quot;complement&quot;:&quot;true&quot;}}</code></p> <p>To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the <code>strategy</code> parameter to <code>random</code> and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between <code>percentBegin</code> and <code>percentEnd</code>. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.</p> <p>The following two <code>DataRearrangement</code> lines are examples of non-sequentially ordered training and evaluation datasources:</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;random&quot;, &quot;randomSeed&quot;=&quot;s3://my<em>s3</em>path/bucket/file.csv&quot;}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;random&quot;, &quot;randomSeed&quot;=&quot;s3://my<em>s3</em>path/bucket/file.csv&quot;, &quot;complement&quot;:&quot;true&quot;}}</code></p> </li> </ul></p>
    #[serde(rename = "DataRearrangement")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_rearrangement: Option<String>,
    /// <p><p>A JSON string that represents the schema for an Amazon RDS <code>DataSource</code>. The <code>DataSchema</code> defines the structure of the observation data in the data file(s) referenced in the <code>DataSource</code>.</p> <p>A <code>DataSchema</code> is not required if you specify a <code>DataSchemaUri</code></p> <p>Define your <code>DataSchema</code> as a series of key-value pairs. <code>attributes</code> and <code>excludedVariableNames</code> have an array of key-value pairs for their value. Use the following format to define your <code>DataSchema</code>.</p> <p>{ &quot;version&quot;: &quot;1.0&quot;,</p> <p> &quot;recordAnnotationFieldName&quot;: &quot;F1&quot;,</p> <p> &quot;recordWeightFieldName&quot;: &quot;F2&quot;,</p> <p> &quot;targetFieldName&quot;: &quot;F3&quot;,</p> <p> &quot;dataFormat&quot;: &quot;CSV&quot;,</p> <p> &quot;dataFileContainsHeader&quot;: true,</p> <p> &quot;attributes&quot;: [</p> <p> { &quot;fieldName&quot;: &quot;F1&quot;, &quot;fieldType&quot;: &quot;TEXT&quot; }, { &quot;fieldName&quot;: &quot;F2&quot;, &quot;fieldType&quot;: &quot;NUMERIC&quot; }, { &quot;fieldName&quot;: &quot;F3&quot;, &quot;fieldType&quot;: &quot;CATEGORICAL&quot; }, { &quot;fieldName&quot;: &quot;F4&quot;, &quot;fieldType&quot;: &quot;NUMERIC&quot; }, { &quot;fieldName&quot;: &quot;F5&quot;, &quot;fieldType&quot;: &quot;CATEGORICAL&quot; }, { &quot;fieldName&quot;: &quot;F6&quot;, &quot;fieldType&quot;: &quot;TEXT&quot; }, { &quot;fieldName&quot;: &quot;F7&quot;, &quot;fieldType&quot;: &quot;WEIGHTED<em>INT</em>SEQUENCE&quot; }, { &quot;fieldName&quot;: &quot;F8&quot;, &quot;fieldType&quot;: &quot;WEIGHTED<em>STRING</em>SEQUENCE&quot; } ],</p> <p> &quot;excludedVariableNames&quot;: [ &quot;F6&quot; ] } </p> &lt;?oxy<em>insert</em>end&gt;</p>
    #[serde(rename = "DataSchema")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_schema: Option<String>,
    /// <p>The Amazon S3 location of the <code>DataSchema</code>. </p>
    #[serde(rename = "DataSchemaUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_schema_uri: Option<String>,
    /// <p>The AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon RDS database.</p>
    #[serde(rename = "DatabaseCredentials")]
    pub database_credentials: RDSDatabaseCredentials,
    /// <p>Describes the <code>DatabaseName</code> and <code>InstanceIdentifier</code> of an Amazon RDS database.</p>
    #[serde(rename = "DatabaseInformation")]
    pub database_information: RDSDatabase,
    /// <p>The role (DataPipelineDefaultResourceRole) assumed by an Amazon Elastic Compute Cloud (Amazon EC2) instance to carry out the copy operation from Amazon RDS to an Amazon S3 task. For more information, see <a href="http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html">Role templates</a> for data pipelines.</p>
    #[serde(rename = "ResourceRole")]
    pub resource_role: String,
    /// <p>The Amazon S3 location for staging Amazon RDS data. The data retrieved from Amazon RDS using <code>SelectSqlQuery</code> is stored in this location.</p>
    #[serde(rename = "S3StagingLocation")]
    pub s3_staging_location: String,
    /// <p>The security group IDs to be used to access a VPC-based RDS DB instance. Ensure that there are appropriate ingress rules set up to allow access to the RDS DB instance. This attribute is used by Data Pipeline to carry out the copy operation from Amazon RDS to an Amazon S3 task.</p>
    #[serde(rename = "SecurityGroupIds")]
    pub security_group_ids: Vec<String>,
    /// <p>The query that is used to retrieve the observation data for the <code>DataSource</code>.</p>
    #[serde(rename = "SelectSqlQuery")]
    pub select_sql_query: String,
    /// <p>The role (DataPipelineDefaultRole) assumed by AWS Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see <a href="http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html">Role templates</a> for data pipelines.</p>
    #[serde(rename = "ServiceRole")]
    pub service_role: String,
    /// <p>The subnet ID to be used to access a VPC-based RDS DB instance. This attribute is used by Data Pipeline to carry out the copy task from Amazon RDS to Amazon S3.</p>
    #[serde(rename = "SubnetId")]
    pub subnet_id: String,
}

/// <p>The database details of an Amazon RDS database.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct RDSDatabase {
    #[serde(rename = "DatabaseName")]
    pub database_name: String,
    /// <p>The ID of an RDS DB instance.</p>
    #[serde(rename = "InstanceIdentifier")]
    pub instance_identifier: String,
}

/// <p>The database credentials to connect to a database on an RDS DB instance.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct RDSDatabaseCredentials {
    #[serde(rename = "Password")]
    pub password: String,
    #[serde(rename = "Username")]
    pub username: String,
}

/// <p>The datasource details that are specific to Amazon RDS.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct RDSMetadata {
    /// <p>The ID of the Data Pipeline instance that is used to carry to copy data from Amazon RDS to Amazon S3. You can use the ID to find details about the instance in the Data Pipeline console.</p>
    #[serde(rename = "DataPipelineId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_pipeline_id: Option<String>,
    /// <p>The database details required to connect to an Amazon RDS.</p>
    #[serde(rename = "Database")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub database: Option<RDSDatabase>,
    #[serde(rename = "DatabaseUserName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub database_user_name: Option<String>,
    /// <p>The role (DataPipelineDefaultResourceRole) assumed by an Amazon EC2 instance to carry out the copy task from Amazon RDS to Amazon S3. For more information, see <a href="http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html">Role templates</a> for data pipelines.</p>
    #[serde(rename = "ResourceRole")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_role: Option<String>,
    /// <p>The SQL query that is supplied during <a>CreateDataSourceFromRDS</a>. Returns only if <code>Verbose</code> is true in <code>GetDataSourceInput</code>. </p>
    #[serde(rename = "SelectSqlQuery")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub select_sql_query: Option<String>,
    /// <p>The role (DataPipelineDefaultRole) assumed by the Data Pipeline service to monitor the progress of the copy task from Amazon RDS to Amazon S3. For more information, see <a href="http://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html">Role templates</a> for data pipelines.</p>
    #[serde(rename = "ServiceRole")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub service_role: Option<String>,
}

/// <p> Describes the real-time endpoint information for an <code>MLModel</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct RealtimeEndpointInfo {
    /// <p>The time that the request to create the real-time endpoint for the <code>MLModel</code> was received. The time is expressed in epoch time.</p>
    #[serde(rename = "CreatedAt")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub created_at: Option<f64>,
    /// <p><p> The current status of the real-time endpoint for the <code>MLModel</code>. This element can have one of the following values: </p> <ul> <li> <code>NONE</code> - Endpoint does not exist or was previously deleted.</li> <li> <code>READY</code> - Endpoint is ready to be used for real-time predictions.</li> <li> <code>UPDATING</code> - Updating/creating the endpoint. </li> </ul></p>
    #[serde(rename = "EndpointStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub endpoint_status: Option<String>,
    /// <p><p>The URI that specifies where to send real-time prediction requests for the <code>MLModel</code>.</p> <note><title>Note</title> <p>The application must wait until the real-time endpoint is ready before using this URI.</p> </note></p>
    #[serde(rename = "EndpointUrl")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub endpoint_url: Option<String>,
    /// <p> The maximum processing rate for the real-time endpoint for <code>MLModel</code>, measured in incoming requests per second.</p>
    #[serde(rename = "PeakRequestsPerSecond")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub peak_requests_per_second: Option<i64>,
}

/// <p>Describes the data specification of an Amazon Redshift <code>DataSource</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct RedshiftDataSpec {
    /// <p><p>A JSON string that represents the splitting and rearrangement processing to be applied to a <code>DataSource</code>. If the <code>DataRearrangement</code> parameter is not provided, all of the input data is used to create the <code>Datasource</code>.</p> <p>There are multiple parameters that control what data is used to create a datasource:</p> <ul> <li><p><b><code>percentBegin</code></b></p> <p>Use <code>percentBegin</code> to indicate the beginning of the range of the data used to create the Datasource. If you do not include <code>percentBegin</code> and <code>percentEnd</code>, Amazon ML includes all of the data when creating the datasource.</p></li> <li><p><b><code>percentEnd</code></b></p> <p>Use <code>percentEnd</code> to indicate the end of the range of the data used to create the Datasource. If you do not include <code>percentBegin</code> and <code>percentEnd</code>, Amazon ML includes all of the data when creating the datasource.</p></li> <li><p><b><code>complement</code></b></p> <p>The <code>complement</code> parameter instructs Amazon ML to use the data that is not included in the range of <code>percentBegin</code> to <code>percentEnd</code> to create a datasource. The <code>complement</code> parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for <code>percentBegin</code> and <code>percentEnd</code>, along with the <code>complement</code> parameter.</p> <p>For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:0, &quot;percentEnd&quot;:25}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:0, &quot;percentEnd&quot;:25, &quot;complement&quot;:&quot;true&quot;}}</code></p> </li> <li><p><b><code>strategy</code></b></p> <p>To change how Amazon ML splits the data for a datasource, use the <code>strategy</code> parameter.</p> <p>The default value for the <code>strategy</code> parameter is <code>sequential</code>, meaning that Amazon ML takes all of the data records between the <code>percentBegin</code> and <code>percentEnd</code> parameters for the datasource, in the order that the records appear in the input data.</p> <p>The following two <code>DataRearrangement</code> lines are examples of sequentially ordered training and evaluation datasources:</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;sequential&quot;}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;sequential&quot;, &quot;complement&quot;:&quot;true&quot;}}</code></p> <p>To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the <code>strategy</code> parameter to <code>random</code> and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between <code>percentBegin</code> and <code>percentEnd</code>. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.</p> <p>The following two <code>DataRearrangement</code> lines are examples of non-sequentially ordered training and evaluation datasources:</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;random&quot;, &quot;randomSeed&quot;=&quot;s3://my<em>s3</em>path/bucket/file.csv&quot;}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;random&quot;, &quot;randomSeed&quot;=&quot;s3://my<em>s3</em>path/bucket/file.csv&quot;, &quot;complement&quot;:&quot;true&quot;}}</code></p> </li> </ul></p>
    #[serde(rename = "DataRearrangement")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_rearrangement: Option<String>,
    /// <p>A JSON string that represents the schema for an Amazon Redshift <code>DataSource</code>. The <code>DataSchema</code> defines the structure of the observation data in the data file(s) referenced in the <code>DataSource</code>.</p> <p>A <code>DataSchema</code> is not required if you specify a <code>DataSchemaUri</code>.</p> <p>Define your <code>DataSchema</code> as a series of key-value pairs. <code>attributes</code> and <code>excludedVariableNames</code> have an array of key-value pairs for their value. Use the following format to define your <code>DataSchema</code>.</p> <p>{ "version": "1.0",</p> <p> "recordAnnotationFieldName": "F1",</p> <p> "recordWeightFieldName": "F2",</p> <p> "targetFieldName": "F3",</p> <p> "dataFormat": "CSV",</p> <p> "dataFileContainsHeader": true,</p> <p> "attributes": [</p> <p> { "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],</p> <p> "excludedVariableNames": [ "F6" ] } </p>
    #[serde(rename = "DataSchema")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_schema: Option<String>,
    /// <p>Describes the schema location for an Amazon Redshift <code>DataSource</code>.</p>
    #[serde(rename = "DataSchemaUri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_schema_uri: Option<String>,
    /// <p>Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift database.</p>
    #[serde(rename = "DatabaseCredentials")]
    pub database_credentials: RedshiftDatabaseCredentials,
    /// <p>Describes the <code>DatabaseName</code> and <code>ClusterIdentifier</code> for an Amazon Redshift <code>DataSource</code>.</p>
    #[serde(rename = "DatabaseInformation")]
    pub database_information: RedshiftDatabase,
    /// <p>Describes an Amazon S3 location to store the result set of the <code>SelectSqlQuery</code> query.</p>
    #[serde(rename = "S3StagingLocation")]
    pub s3_staging_location: String,
    /// <p>Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift <code>DataSource</code>.</p>
    #[serde(rename = "SelectSqlQuery")]
    pub select_sql_query: String,
}

/// <p>Describes the database details required to connect to an Amazon Redshift database.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct RedshiftDatabase {
    #[serde(rename = "ClusterIdentifier")]
    pub cluster_identifier: String,
    #[serde(rename = "DatabaseName")]
    pub database_name: String,
}

/// <p> Describes the database credentials for connecting to a database on an Amazon Redshift cluster.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct RedshiftDatabaseCredentials {
    #[serde(rename = "Password")]
    pub password: String,
    #[serde(rename = "Username")]
    pub username: String,
}

/// <p>Describes the <code>DataSource</code> details specific to Amazon Redshift.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct RedshiftMetadata {
    #[serde(rename = "DatabaseUserName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub database_user_name: Option<String>,
    #[serde(rename = "RedshiftDatabase")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub redshift_database: Option<RedshiftDatabase>,
    /// <p> The SQL query that is specified during <a>CreateDataSourceFromRedshift</a>. Returns only if <code>Verbose</code> is true in GetDataSourceInput. </p>
    #[serde(rename = "SelectSqlQuery")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub select_sql_query: Option<String>,
}

/// <p> Describes the data specification of a <code>DataSource</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct S3DataSpec {
    /// <p>The location of the data file(s) used by a <code>DataSource</code>. The URI specifies a data file or an Amazon Simple Storage Service (Amazon S3) directory or bucket containing data files.</p>
    #[serde(rename = "DataLocationS3")]
    pub data_location_s3: String,
    /// <p><p>A JSON string that represents the splitting and rearrangement processing to be applied to a <code>DataSource</code>. If the <code>DataRearrangement</code> parameter is not provided, all of the input data is used to create the <code>Datasource</code>.</p> <p>There are multiple parameters that control what data is used to create a datasource:</p> <ul> <li><p><b><code>percentBegin</code></b></p> <p>Use <code>percentBegin</code> to indicate the beginning of the range of the data used to create the Datasource. If you do not include <code>percentBegin</code> and <code>percentEnd</code>, Amazon ML includes all of the data when creating the datasource.</p></li> <li><p><b><code>percentEnd</code></b></p> <p>Use <code>percentEnd</code> to indicate the end of the range of the data used to create the Datasource. If you do not include <code>percentBegin</code> and <code>percentEnd</code>, Amazon ML includes all of the data when creating the datasource.</p></li> <li><p><b><code>complement</code></b></p> <p>The <code>complement</code> parameter instructs Amazon ML to use the data that is not included in the range of <code>percentBegin</code> to <code>percentEnd</code> to create a datasource. The <code>complement</code> parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values for <code>percentBegin</code> and <code>percentEnd</code>, along with the <code>complement</code> parameter.</p> <p>For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:0, &quot;percentEnd&quot;:25}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:0, &quot;percentEnd&quot;:25, &quot;complement&quot;:&quot;true&quot;}}</code></p> </li> <li><p><b><code>strategy</code></b></p> <p>To change how Amazon ML splits the data for a datasource, use the <code>strategy</code> parameter.</p> <p>The default value for the <code>strategy</code> parameter is <code>sequential</code>, meaning that Amazon ML takes all of the data records between the <code>percentBegin</code> and <code>percentEnd</code> parameters for the datasource, in the order that the records appear in the input data.</p> <p>The following two <code>DataRearrangement</code> lines are examples of sequentially ordered training and evaluation datasources:</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;sequential&quot;}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;sequential&quot;, &quot;complement&quot;:&quot;true&quot;}}</code></p> <p>To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the <code>strategy</code> parameter to <code>random</code> and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number between <code>percentBegin</code> and <code>percentEnd</code>. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.</p> <p>The following two <code>DataRearrangement</code> lines are examples of non-sequentially ordered training and evaluation datasources:</p> <p>Datasource for evaluation: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;random&quot;, &quot;randomSeed&quot;=&quot;s3://my<em>s3</em>path/bucket/file.csv&quot;}}</code></p> <p>Datasource for training: <code>{&quot;splitting&quot;:{&quot;percentBegin&quot;:70, &quot;percentEnd&quot;:100, &quot;strategy&quot;:&quot;random&quot;, &quot;randomSeed&quot;=&quot;s3://my<em>s3</em>path/bucket/file.csv&quot;, &quot;complement&quot;:&quot;true&quot;}}</code></p> </li> </ul></p>
    #[serde(rename = "DataRearrangement")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_rearrangement: Option<String>,
    /// <p><p> A JSON string that represents the schema for an Amazon S3 <code>DataSource</code>. The <code>DataSchema</code> defines the structure of the observation data in the data file(s) referenced in the <code>DataSource</code>.</p> <p>You must provide either the <code>DataSchema</code> or the <code>DataSchemaLocationS3</code>.</p> <p>Define your <code>DataSchema</code> as a series of key-value pairs. <code>attributes</code> and <code>excludedVariableNames</code> have an array of key-value pairs for their value. Use the following format to define your <code>DataSchema</code>.</p> <p>{ &quot;version&quot;: &quot;1.0&quot;,</p> <p> &quot;recordAnnotationFieldName&quot;: &quot;F1&quot;,</p> <p> &quot;recordWeightFieldName&quot;: &quot;F2&quot;,</p> <p> &quot;targetFieldName&quot;: &quot;F3&quot;,</p> <p> &quot;dataFormat&quot;: &quot;CSV&quot;,</p> <p> &quot;dataFileContainsHeader&quot;: true,</p> <p> &quot;attributes&quot;: [</p> <p> { &quot;fieldName&quot;: &quot;F1&quot;, &quot;fieldType&quot;: &quot;TEXT&quot; }, { &quot;fieldName&quot;: &quot;F2&quot;, &quot;fieldType&quot;: &quot;NUMERIC&quot; }, { &quot;fieldName&quot;: &quot;F3&quot;, &quot;fieldType&quot;: &quot;CATEGORICAL&quot; }, { &quot;fieldName&quot;: &quot;F4&quot;, &quot;fieldType&quot;: &quot;NUMERIC&quot; }, { &quot;fieldName&quot;: &quot;F5&quot;, &quot;fieldType&quot;: &quot;CATEGORICAL&quot; }, { &quot;fieldName&quot;: &quot;F6&quot;, &quot;fieldType&quot;: &quot;TEXT&quot; }, { &quot;fieldName&quot;: &quot;F7&quot;, &quot;fieldType&quot;: &quot;WEIGHTED<em>INT</em>SEQUENCE&quot; }, { &quot;fieldName&quot;: &quot;F8&quot;, &quot;fieldType&quot;: &quot;WEIGHTED<em>STRING</em>SEQUENCE&quot; } ],</p> <p> &quot;excludedVariableNames&quot;: [ &quot;F6&quot; ] } </p> &lt;?oxy<em>insert</em>end&gt;</p>
    #[serde(rename = "DataSchema")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_schema: Option<String>,
    /// <p>Describes the schema location in Amazon S3. You must provide either the <code>DataSchema</code> or the <code>DataSchemaLocationS3</code>.</p>
    #[serde(rename = "DataSchemaLocationS3")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_schema_location_s3: Option<String>,
}

/// <p>A custom key-value pair associated with an ML object, such as an ML model.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Tag {
    /// <p>A unique identifier for the tag. Valid characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.</p>
    #[serde(rename = "Key")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub key: Option<String>,
    /// <p>An optional string, typically used to describe or define the tag. Valid characters include Unicode letters, digits, white space, _, ., /, =, +, -, %, and @.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateBatchPredictionInput {
    /// <p>The ID assigned to the <code>BatchPrediction</code> during creation.</p>
    #[serde(rename = "BatchPredictionId")]
    pub batch_prediction_id: String,
    /// <p>A new user-supplied name or description of the <code>BatchPrediction</code>.</p>
    #[serde(rename = "BatchPredictionName")]
    pub batch_prediction_name: String,
}

/// <p>Represents the output of an <code>UpdateBatchPrediction</code> operation.</p> <p>You can see the updated content by using the <code>GetBatchPrediction</code> operation.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateBatchPredictionOutput {
    /// <p>The ID assigned to the <code>BatchPrediction</code> during creation. This value should be identical to the value of the <code>BatchPredictionId</code> in the request.</p>
    #[serde(rename = "BatchPredictionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_prediction_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateDataSourceInput {
    /// <p>The ID assigned to the <code>DataSource</code> during creation.</p>
    #[serde(rename = "DataSourceId")]
    pub data_source_id: String,
    /// <p>A new user-supplied name or description of the <code>DataSource</code> that will replace the current description. </p>
    #[serde(rename = "DataSourceName")]
    pub data_source_name: String,
}

/// <p>Represents the output of an <code>UpdateDataSource</code> operation.</p> <p>You can see the updated content by using the <code>GetBatchPrediction</code> operation.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateDataSourceOutput {
    /// <p>The ID assigned to the <code>DataSource</code> during creation. This value should be identical to the value of the <code>DataSourceID</code> in the request.</p>
    #[serde(rename = "DataSourceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_source_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateEvaluationInput {
    /// <p>The ID assigned to the <code>Evaluation</code> during creation.</p>
    #[serde(rename = "EvaluationId")]
    pub evaluation_id: String,
    /// <p>A new user-supplied name or description of the <code>Evaluation</code> that will replace the current content. </p>
    #[serde(rename = "EvaluationName")]
    pub evaluation_name: String,
}

/// <p>Represents the output of an <code>UpdateEvaluation</code> operation.</p> <p>You can see the updated content by using the <code>GetEvaluation</code> operation.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateEvaluationOutput {
    /// <p>The ID assigned to the <code>Evaluation</code> during creation. This value should be identical to the value of the <code>Evaluation</code> in the request.</p>
    #[serde(rename = "EvaluationId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub evaluation_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateMLModelInput {
    /// <p>The ID assigned to the <code>MLModel</code> during creation.</p>
    #[serde(rename = "MLModelId")]
    pub ml_model_id: String,
    /// <p>A user-supplied name or description of the <code>MLModel</code>.</p>
    #[serde(rename = "MLModelName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_name: Option<String>,
    /// <p>The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction.</p> <p>Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</p>
    #[serde(rename = "ScoreThreshold")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub score_threshold: Option<f32>,
}

/// <p>Represents the output of an <code>UpdateMLModel</code> operation.</p> <p>You can see the updated content by using the <code>GetMLModel</code> operation.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateMLModelOutput {
    /// <p>The ID assigned to the <code>MLModel</code> during creation. This value should be identical to the value of the <code>MLModelID</code> in the request.</p>
    #[serde(rename = "MLModelId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub ml_model_id: Option<String>,
}

/// Errors returned by AddTags
#[derive(Debug, PartialEq)]
pub enum AddTagsError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),

    InvalidTag(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),

    TagLimitExceeded(String),
}

impl AddTagsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<AddTagsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(AddTagsError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(AddTagsError::InvalidInput(err.msg))
                }
                "InvalidTagException" => {
                    return RusotoError::Service(AddTagsError::InvalidTag(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(AddTagsError::ResourceNotFound(err.msg))
                }
                "TagLimitExceededException" => {
                    return RusotoError::Service(AddTagsError::TagLimitExceeded(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for AddTagsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for AddTagsError {
    fn description(&self) -> &str {
        match *self {
            AddTagsError::InternalServer(ref cause) => cause,
            AddTagsError::InvalidInput(ref cause) => cause,
            AddTagsError::InvalidTag(ref cause) => cause,
            AddTagsError::ResourceNotFound(ref cause) => cause,
            AddTagsError::TagLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateBatchPrediction
#[derive(Debug, PartialEq)]
pub enum CreateBatchPredictionError {
    /// <p>A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.</p>
    IdempotentParameterMismatch(String),
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl CreateBatchPredictionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateBatchPredictionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        CreateBatchPredictionError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerException" => {
                    return RusotoError::Service(CreateBatchPredictionError::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(CreateBatchPredictionError::InvalidInput(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateBatchPredictionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateBatchPredictionError {
    fn description(&self) -> &str {
        match *self {
            CreateBatchPredictionError::IdempotentParameterMismatch(ref cause) => cause,
            CreateBatchPredictionError::InternalServer(ref cause) => cause,
            CreateBatchPredictionError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateDataSourceFromRDS
#[derive(Debug, PartialEq)]
pub enum CreateDataSourceFromRDSError {
    /// <p>A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.</p>
    IdempotentParameterMismatch(String),
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl CreateDataSourceFromRDSError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateDataSourceFromRDSError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        CreateDataSourceFromRDSError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerException" => {
                    return RusotoError::Service(CreateDataSourceFromRDSError::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(CreateDataSourceFromRDSError::InvalidInput(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateDataSourceFromRDSError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateDataSourceFromRDSError {
    fn description(&self) -> &str {
        match *self {
            CreateDataSourceFromRDSError::IdempotentParameterMismatch(ref cause) => cause,
            CreateDataSourceFromRDSError::InternalServer(ref cause) => cause,
            CreateDataSourceFromRDSError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateDataSourceFromRedshift
#[derive(Debug, PartialEq)]
pub enum CreateDataSourceFromRedshiftError {
    /// <p>A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.</p>
    IdempotentParameterMismatch(String),
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl CreateDataSourceFromRedshiftError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<CreateDataSourceFromRedshiftError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        CreateDataSourceFromRedshiftError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerException" => {
                    return RusotoError::Service(CreateDataSourceFromRedshiftError::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(CreateDataSourceFromRedshiftError::InvalidInput(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateDataSourceFromRedshiftError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateDataSourceFromRedshiftError {
    fn description(&self) -> &str {
        match *self {
            CreateDataSourceFromRedshiftError::IdempotentParameterMismatch(ref cause) => cause,
            CreateDataSourceFromRedshiftError::InternalServer(ref cause) => cause,
            CreateDataSourceFromRedshiftError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateDataSourceFromS3
#[derive(Debug, PartialEq)]
pub enum CreateDataSourceFromS3Error {
    /// <p>A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.</p>
    IdempotentParameterMismatch(String),
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl CreateDataSourceFromS3Error {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateDataSourceFromS3Error> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        CreateDataSourceFromS3Error::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerException" => {
                    return RusotoError::Service(CreateDataSourceFromS3Error::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(CreateDataSourceFromS3Error::InvalidInput(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateDataSourceFromS3Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateDataSourceFromS3Error {
    fn description(&self) -> &str {
        match *self {
            CreateDataSourceFromS3Error::IdempotentParameterMismatch(ref cause) => cause,
            CreateDataSourceFromS3Error::InternalServer(ref cause) => cause,
            CreateDataSourceFromS3Error::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateEvaluation
#[derive(Debug, PartialEq)]
pub enum CreateEvaluationError {
    /// <p>A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.</p>
    IdempotentParameterMismatch(String),
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl CreateEvaluationError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateEvaluationError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        CreateEvaluationError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerException" => {
                    return RusotoError::Service(CreateEvaluationError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(CreateEvaluationError::InvalidInput(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateEvaluationError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateEvaluationError {
    fn description(&self) -> &str {
        match *self {
            CreateEvaluationError::IdempotentParameterMismatch(ref cause) => cause,
            CreateEvaluationError::InternalServer(ref cause) => cause,
            CreateEvaluationError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateMLModel
#[derive(Debug, PartialEq)]
pub enum CreateMLModelError {
    /// <p>A second request to use or change an object was not allowed. This can result from retrying a request using a parameter that was not present in the original request.</p>
    IdempotentParameterMismatch(String),
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl CreateMLModelError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateMLModelError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(CreateMLModelError::IdempotentParameterMismatch(
                        err.msg,
                    ))
                }
                "InternalServerException" => {
                    return RusotoError::Service(CreateMLModelError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(CreateMLModelError::InvalidInput(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateMLModelError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateMLModelError {
    fn description(&self) -> &str {
        match *self {
            CreateMLModelError::IdempotentParameterMismatch(ref cause) => cause,
            CreateMLModelError::InternalServer(ref cause) => cause,
            CreateMLModelError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateRealtimeEndpoint
#[derive(Debug, PartialEq)]
pub enum CreateRealtimeEndpointError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl CreateRealtimeEndpointError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateRealtimeEndpointError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(CreateRealtimeEndpointError::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(CreateRealtimeEndpointError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(CreateRealtimeEndpointError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateRealtimeEndpointError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateRealtimeEndpointError {
    fn description(&self) -> &str {
        match *self {
            CreateRealtimeEndpointError::InternalServer(ref cause) => cause,
            CreateRealtimeEndpointError::InvalidInput(ref cause) => cause,
            CreateRealtimeEndpointError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteBatchPrediction
#[derive(Debug, PartialEq)]
pub enum DeleteBatchPredictionError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl DeleteBatchPredictionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteBatchPredictionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DeleteBatchPredictionError::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DeleteBatchPredictionError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteBatchPredictionError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteBatchPredictionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteBatchPredictionError {
    fn description(&self) -> &str {
        match *self {
            DeleteBatchPredictionError::InternalServer(ref cause) => cause,
            DeleteBatchPredictionError::InvalidInput(ref cause) => cause,
            DeleteBatchPredictionError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteDataSource
#[derive(Debug, PartialEq)]
pub enum DeleteDataSourceError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl DeleteDataSourceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteDataSourceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DeleteDataSourceError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DeleteDataSourceError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteDataSourceError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteDataSourceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteDataSourceError {
    fn description(&self) -> &str {
        match *self {
            DeleteDataSourceError::InternalServer(ref cause) => cause,
            DeleteDataSourceError::InvalidInput(ref cause) => cause,
            DeleteDataSourceError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteEvaluation
#[derive(Debug, PartialEq)]
pub enum DeleteEvaluationError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl DeleteEvaluationError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteEvaluationError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DeleteEvaluationError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DeleteEvaluationError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteEvaluationError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteEvaluationError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteEvaluationError {
    fn description(&self) -> &str {
        match *self {
            DeleteEvaluationError::InternalServer(ref cause) => cause,
            DeleteEvaluationError::InvalidInput(ref cause) => cause,
            DeleteEvaluationError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteMLModel
#[derive(Debug, PartialEq)]
pub enum DeleteMLModelError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl DeleteMLModelError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteMLModelError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DeleteMLModelError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DeleteMLModelError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteMLModelError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteMLModelError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteMLModelError {
    fn description(&self) -> &str {
        match *self {
            DeleteMLModelError::InternalServer(ref cause) => cause,
            DeleteMLModelError::InvalidInput(ref cause) => cause,
            DeleteMLModelError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteRealtimeEndpoint
#[derive(Debug, PartialEq)]
pub enum DeleteRealtimeEndpointError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl DeleteRealtimeEndpointError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteRealtimeEndpointError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DeleteRealtimeEndpointError::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DeleteRealtimeEndpointError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteRealtimeEndpointError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteRealtimeEndpointError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteRealtimeEndpointError {
    fn description(&self) -> &str {
        match *self {
            DeleteRealtimeEndpointError::InternalServer(ref cause) => cause,
            DeleteRealtimeEndpointError::InvalidInput(ref cause) => cause,
            DeleteRealtimeEndpointError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteTags
#[derive(Debug, PartialEq)]
pub enum DeleteTagsError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),

    InvalidTag(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl DeleteTagsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteTagsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DeleteTagsError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DeleteTagsError::InvalidInput(err.msg))
                }
                "InvalidTagException" => {
                    return RusotoError::Service(DeleteTagsError::InvalidTag(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteTagsError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteTagsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteTagsError {
    fn description(&self) -> &str {
        match *self {
            DeleteTagsError::InternalServer(ref cause) => cause,
            DeleteTagsError::InvalidInput(ref cause) => cause,
            DeleteTagsError::InvalidTag(ref cause) => cause,
            DeleteTagsError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeBatchPredictions
#[derive(Debug, PartialEq)]
pub enum DescribeBatchPredictionsError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl DescribeBatchPredictionsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeBatchPredictionsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DescribeBatchPredictionsError::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DescribeBatchPredictionsError::InvalidInput(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeBatchPredictionsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeBatchPredictionsError {
    fn description(&self) -> &str {
        match *self {
            DescribeBatchPredictionsError::InternalServer(ref cause) => cause,
            DescribeBatchPredictionsError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeDataSources
#[derive(Debug, PartialEq)]
pub enum DescribeDataSourcesError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl DescribeDataSourcesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeDataSourcesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DescribeDataSourcesError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DescribeDataSourcesError::InvalidInput(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeDataSourcesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeDataSourcesError {
    fn description(&self) -> &str {
        match *self {
            DescribeDataSourcesError::InternalServer(ref cause) => cause,
            DescribeDataSourcesError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeEvaluations
#[derive(Debug, PartialEq)]
pub enum DescribeEvaluationsError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl DescribeEvaluationsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeEvaluationsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DescribeEvaluationsError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DescribeEvaluationsError::InvalidInput(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeEvaluationsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeEvaluationsError {
    fn description(&self) -> &str {
        match *self {
            DescribeEvaluationsError::InternalServer(ref cause) => cause,
            DescribeEvaluationsError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeMLModels
#[derive(Debug, PartialEq)]
pub enum DescribeMLModelsError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
}

impl DescribeMLModelsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeMLModelsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DescribeMLModelsError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DescribeMLModelsError::InvalidInput(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeMLModelsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeMLModelsError {
    fn description(&self) -> &str {
        match *self {
            DescribeMLModelsError::InternalServer(ref cause) => cause,
            DescribeMLModelsError::InvalidInput(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeTags
#[derive(Debug, PartialEq)]
pub enum DescribeTagsError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl DescribeTagsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeTagsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(DescribeTagsError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(DescribeTagsError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DescribeTagsError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeTagsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeTagsError {
    fn description(&self) -> &str {
        match *self {
            DescribeTagsError::InternalServer(ref cause) => cause,
            DescribeTagsError::InvalidInput(ref cause) => cause,
            DescribeTagsError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by GetBatchPrediction
#[derive(Debug, PartialEq)]
pub enum GetBatchPredictionError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl GetBatchPredictionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetBatchPredictionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(GetBatchPredictionError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(GetBatchPredictionError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetBatchPredictionError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetBatchPredictionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetBatchPredictionError {
    fn description(&self) -> &str {
        match *self {
            GetBatchPredictionError::InternalServer(ref cause) => cause,
            GetBatchPredictionError::InvalidInput(ref cause) => cause,
            GetBatchPredictionError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by GetDataSource
#[derive(Debug, PartialEq)]
pub enum GetDataSourceError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl GetDataSourceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetDataSourceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(GetDataSourceError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(GetDataSourceError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetDataSourceError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetDataSourceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetDataSourceError {
    fn description(&self) -> &str {
        match *self {
            GetDataSourceError::InternalServer(ref cause) => cause,
            GetDataSourceError::InvalidInput(ref cause) => cause,
            GetDataSourceError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by GetEvaluation
#[derive(Debug, PartialEq)]
pub enum GetEvaluationError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl GetEvaluationError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetEvaluationError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(GetEvaluationError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(GetEvaluationError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetEvaluationError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetEvaluationError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetEvaluationError {
    fn description(&self) -> &str {
        match *self {
            GetEvaluationError::InternalServer(ref cause) => cause,
            GetEvaluationError::InvalidInput(ref cause) => cause,
            GetEvaluationError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by GetMLModel
#[derive(Debug, PartialEq)]
pub enum GetMLModelError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl GetMLModelError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetMLModelError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(GetMLModelError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(GetMLModelError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetMLModelError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetMLModelError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetMLModelError {
    fn description(&self) -> &str {
        match *self {
            GetMLModelError::InternalServer(ref cause) => cause,
            GetMLModelError::InvalidInput(ref cause) => cause,
            GetMLModelError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by Predict
#[derive(Debug, PartialEq)]
pub enum PredictError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>The subscriber exceeded the maximum number of operations. This exception can occur when listing objects such as <code>DataSource</code>.</p>
    LimitExceeded(String),
    /// <p>The exception is thrown when a predict request is made to an unmounted <code>MLModel</code>.</p>
    PredictorNotMounted(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl PredictError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<PredictError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(PredictError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(PredictError::InvalidInput(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(PredictError::LimitExceeded(err.msg))
                }
                "PredictorNotMountedException" => {
                    return RusotoError::Service(PredictError::PredictorNotMounted(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(PredictError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for PredictError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for PredictError {
    fn description(&self) -> &str {
        match *self {
            PredictError::InternalServer(ref cause) => cause,
            PredictError::InvalidInput(ref cause) => cause,
            PredictError::LimitExceeded(ref cause) => cause,
            PredictError::PredictorNotMounted(ref cause) => cause,
            PredictError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateBatchPrediction
#[derive(Debug, PartialEq)]
pub enum UpdateBatchPredictionError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl UpdateBatchPredictionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateBatchPredictionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(UpdateBatchPredictionError::InternalServer(
                        err.msg,
                    ))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(UpdateBatchPredictionError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(UpdateBatchPredictionError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateBatchPredictionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateBatchPredictionError {
    fn description(&self) -> &str {
        match *self {
            UpdateBatchPredictionError::InternalServer(ref cause) => cause,
            UpdateBatchPredictionError::InvalidInput(ref cause) => cause,
            UpdateBatchPredictionError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateDataSource
#[derive(Debug, PartialEq)]
pub enum UpdateDataSourceError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl UpdateDataSourceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateDataSourceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(UpdateDataSourceError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(UpdateDataSourceError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(UpdateDataSourceError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateDataSourceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateDataSourceError {
    fn description(&self) -> &str {
        match *self {
            UpdateDataSourceError::InternalServer(ref cause) => cause,
            UpdateDataSourceError::InvalidInput(ref cause) => cause,
            UpdateDataSourceError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateEvaluation
#[derive(Debug, PartialEq)]
pub enum UpdateEvaluationError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl UpdateEvaluationError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateEvaluationError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(UpdateEvaluationError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(UpdateEvaluationError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(UpdateEvaluationError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateEvaluationError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateEvaluationError {
    fn description(&self) -> &str {
        match *self {
            UpdateEvaluationError::InternalServer(ref cause) => cause,
            UpdateEvaluationError::InvalidInput(ref cause) => cause,
            UpdateEvaluationError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateMLModel
#[derive(Debug, PartialEq)]
pub enum UpdateMLModelError {
    /// <p>An error on the server occurred when trying to process a request.</p>
    InternalServer(String),
    /// <p>An error on the client occurred. Typically, the cause is an invalid input value.</p>
    InvalidInput(String),
    /// <p>A specified resource cannot be located.</p>
    ResourceNotFound(String),
}

impl UpdateMLModelError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateMLModelError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "InternalServerException" => {
                    return RusotoError::Service(UpdateMLModelError::InternalServer(err.msg))
                }
                "InvalidInputException" => {
                    return RusotoError::Service(UpdateMLModelError::InvalidInput(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(UpdateMLModelError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateMLModelError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateMLModelError {
    fn description(&self) -> &str {
        match *self {
            UpdateMLModelError::InternalServer(ref cause) => cause,
            UpdateMLModelError::InvalidInput(ref cause) => cause,
            UpdateMLModelError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Trait representing the capabilities of the Amazon Machine Learning API. Amazon Machine Learning clients implement this trait.
pub trait MachineLearning {
    /// <p>Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, <code>AddTags</code> updates the tag's value.</p>
    fn add_tags(&self, input: AddTagsInput) -> RusotoFuture<AddTagsOutput, AddTagsError>;

    /// <p>Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a <code>DataSource</code>. This operation creates a new <code>BatchPrediction</code>, and uses an <code>MLModel</code> and the data files referenced by the <code>DataSource</code> as information sources. </p> <p><code>CreateBatchPrediction</code> is an asynchronous operation. In response to <code>CreateBatchPrediction</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>BatchPrediction</code> status to <code>PENDING</code>. After the <code>BatchPrediction</code> completes, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can poll for status updates by using the <a>GetBatchPrediction</a> operation and checking the <code>Status</code> parameter of the result. After the <code>COMPLETED</code> status appears, the results are available in the location specified by the <code>OutputUri</code> parameter.</p>
    fn create_batch_prediction(
        &self,
        input: CreateBatchPredictionInput,
    ) -> RusotoFuture<CreateBatchPredictionOutput, CreateBatchPredictionError>;

    /// <p>Creates a <code>DataSource</code> object from an <a href="http://aws.amazon.com/rds/"> Amazon Relational Database Service</a> (Amazon RDS). A <code>DataSource</code> references data that can be used to perform <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.</p> <p><code>CreateDataSourceFromRDS</code> is an asynchronous operation. In response to <code>CreateDataSourceFromRDS</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>DataSource</code> status to <code>PENDING</code>. After the <code>DataSource</code> is created and ready for use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>. <code>DataSource</code> in the <code>COMPLETED</code> or <code>PENDING</code> state can be used only to perform <code>&gt;CreateMLModel</code>&gt;, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML cannot accept the input source, it sets the <code>Status</code> parameter to <code>FAILED</code> and includes an error message in the <code>Message</code> attribute of the <code>GetDataSource</code> operation response. </p>
    fn create_data_source_from_rds(
        &self,
        input: CreateDataSourceFromRDSInput,
    ) -> RusotoFuture<CreateDataSourceFromRDSOutput, CreateDataSourceFromRDSError>;

    /// <p><p>Creates a <code>DataSource</code> from a database hosted on an Amazon Redshift cluster. A <code>DataSource</code> references data that can be used to perform either <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.</p> <p><code>CreateDataSourceFromRedshift</code> is an asynchronous operation. In response to <code>CreateDataSourceFromRedshift</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>DataSource</code> status to <code>PENDING</code>. After the <code>DataSource</code> is created and ready for use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>. <code>DataSource</code> in <code>COMPLETED</code> or <code>PENDING</code> states can be used to perform only <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML can&#39;t accept the input source, it sets the <code>Status</code> parameter to <code>FAILED</code> and includes an error message in the <code>Message</code> attribute of the <code>GetDataSource</code> operation response. </p> <p>The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a <code>SelectSqlQuery</code> query. Amazon ML executes an <code>Unload</code> command in Amazon Redshift to transfer the result set of the <code>SelectSqlQuery</code> query to <code>S3StagingLocation</code>.</p> <p>After the <code>DataSource</code> has been created, it&#39;s ready for use in evaluations and batch predictions. If you plan to use the <code>DataSource</code> to train an <code>MLModel</code>, the <code>DataSource</code> also requires a recipe. A recipe describes how each input variable will be used in training an <code>MLModel</code>. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.</p> &lt;?oxy<em>insert</em>start author=&quot;laurama&quot; timestamp=&quot;20160406T153842-0700&quot;&gt;<p>You can&#39;t change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call <code>GetDataSource</code> for an existing datasource and copy the values to a <code>CreateDataSource</code> call. Change the settings that you want to change and make sure that all required fields have the appropriate values.</p> &lt;?oxy<em>insert</em>end&gt;</p>
    fn create_data_source_from_redshift(
        &self,
        input: CreateDataSourceFromRedshiftInput,
    ) -> RusotoFuture<CreateDataSourceFromRedshiftOutput, CreateDataSourceFromRedshiftError>;

    /// <p>Creates a <code>DataSource</code> object. A <code>DataSource</code> references data that can be used to perform <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.</p> <p><code>CreateDataSourceFromS3</code> is an asynchronous operation. In response to <code>CreateDataSourceFromS3</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>DataSource</code> status to <code>PENDING</code>. After the <code>DataSource</code> has been created and is ready for use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>. <code>DataSource</code> in the <code>COMPLETED</code> or <code>PENDING</code> state can be used to perform only <code>CreateMLModel</code>, <code>CreateEvaluation</code> or <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML can't accept the input source, it sets the <code>Status</code> parameter to <code>FAILED</code> and includes an error message in the <code>Message</code> attribute of the <code>GetDataSource</code> operation response. </p> <p>The observation data used in a <code>DataSource</code> should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the <code>DataSource</code>. </p> <p>After the <code>DataSource</code> has been created, it's ready to use in evaluations and batch predictions. If you plan to use the <code>DataSource</code> to train an <code>MLModel</code>, the <code>DataSource</code> also needs a recipe. A recipe describes how each input variable will be used in training an <code>MLModel</code>. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.</p>
    fn create_data_source_from_s3(
        &self,
        input: CreateDataSourceFromS3Input,
    ) -> RusotoFuture<CreateDataSourceFromS3Output, CreateDataSourceFromS3Error>;

    /// <p>Creates a new <code>Evaluation</code> of an <code>MLModel</code>. An <code>MLModel</code> is evaluated on a set of observations associated to a <code>DataSource</code>. Like a <code>DataSource</code> for an <code>MLModel</code>, the <code>DataSource</code> for an <code>Evaluation</code> contains values for the <code>Target Variable</code>. The <code>Evaluation</code> compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the <code>MLModel</code> functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding <code>MLModelType</code>: <code>BINARY</code>, <code>REGRESSION</code> or <code>MULTICLASS</code>. </p> <p><code>CreateEvaluation</code> is an asynchronous operation. In response to <code>CreateEvaluation</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to <code>PENDING</code>. After the <code>Evaluation</code> is created and ready for use, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can use the <code>GetEvaluation</code> operation to check progress of the evaluation during the creation operation.</p>
    fn create_evaluation(
        &self,
        input: CreateEvaluationInput,
    ) -> RusotoFuture<CreateEvaluationOutput, CreateEvaluationError>;

    /// <p>Creates a new <code>MLModel</code> using the <code>DataSource</code> and the recipe as information sources. </p> <p>An <code>MLModel</code> is nearly immutable. Users can update only the <code>MLModelName</code> and the <code>ScoreThreshold</code> in an <code>MLModel</code> without creating a new <code>MLModel</code>. </p> <p><code>CreateMLModel</code> is an asynchronous operation. In response to <code>CreateMLModel</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>MLModel</code> status to <code>PENDING</code>. After the <code>MLModel</code> has been created and ready is for use, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can use the <code>GetMLModel</code> operation to check the progress of the <code>MLModel</code> during the creation operation.</p> <p> <code>CreateMLModel</code> requires a <code>DataSource</code> with computed statistics, which can be created by setting <code>ComputeStatistics</code> to <code>true</code> in <code>CreateDataSourceFromRDS</code>, <code>CreateDataSourceFromS3</code>, or <code>CreateDataSourceFromRedshift</code> operations. </p>
    fn create_ml_model(
        &self,
        input: CreateMLModelInput,
    ) -> RusotoFuture<CreateMLModelOutput, CreateMLModelError>;

    /// <p>Creates a real-time endpoint for the <code>MLModel</code>. The endpoint contains the URI of the <code>MLModel</code>; that is, the location to send real-time prediction requests for the specified <code>MLModel</code>.</p>
    fn create_realtime_endpoint(
        &self,
        input: CreateRealtimeEndpointInput,
    ) -> RusotoFuture<CreateRealtimeEndpointOutput, CreateRealtimeEndpointError>;

    /// <p>Assigns the DELETED status to a <code>BatchPrediction</code>, rendering it unusable.</p> <p>After using the <code>DeleteBatchPrediction</code> operation, you can use the <a>GetBatchPrediction</a> operation to verify that the status of the <code>BatchPrediction</code> changed to DELETED.</p> <p><b>Caution:</b> The result of the <code>DeleteBatchPrediction</code> operation is irreversible.</p>
    fn delete_batch_prediction(
        &self,
        input: DeleteBatchPredictionInput,
    ) -> RusotoFuture<DeleteBatchPredictionOutput, DeleteBatchPredictionError>;

    /// <p>Assigns the DELETED status to a <code>DataSource</code>, rendering it unusable.</p> <p>After using the <code>DeleteDataSource</code> operation, you can use the <a>GetDataSource</a> operation to verify that the status of the <code>DataSource</code> changed to DELETED.</p> <p><b>Caution:</b> The results of the <code>DeleteDataSource</code> operation are irreversible.</p>
    fn delete_data_source(
        &self,
        input: DeleteDataSourceInput,
    ) -> RusotoFuture<DeleteDataSourceOutput, DeleteDataSourceError>;

    /// <p><p>Assigns the <code>DELETED</code> status to an <code>Evaluation</code>, rendering it unusable.</p> <p>After invoking the <code>DeleteEvaluation</code> operation, you can use the <code>GetEvaluation</code> operation to verify that the status of the <code>Evaluation</code> changed to <code>DELETED</code>.</p> <caution><title>Caution</title> <p>The results of the <code>DeleteEvaluation</code> operation are irreversible.</p></caution></p>
    fn delete_evaluation(
        &self,
        input: DeleteEvaluationInput,
    ) -> RusotoFuture<DeleteEvaluationOutput, DeleteEvaluationError>;

    /// <p>Assigns the <code>DELETED</code> status to an <code>MLModel</code>, rendering it unusable.</p> <p>After using the <code>DeleteMLModel</code> operation, you can use the <code>GetMLModel</code> operation to verify that the status of the <code>MLModel</code> changed to DELETED.</p> <p><b>Caution:</b> The result of the <code>DeleteMLModel</code> operation is irreversible.</p>
    fn delete_ml_model(
        &self,
        input: DeleteMLModelInput,
    ) -> RusotoFuture<DeleteMLModelOutput, DeleteMLModelError>;

    /// <p>Deletes a real time endpoint of an <code>MLModel</code>.</p>
    fn delete_realtime_endpoint(
        &self,
        input: DeleteRealtimeEndpointInput,
    ) -> RusotoFuture<DeleteRealtimeEndpointOutput, DeleteRealtimeEndpointError>;

    /// <p>Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.</p> <p>If you specify a tag that doesn't exist, Amazon ML ignores it.</p>
    fn delete_tags(
        &self,
        input: DeleteTagsInput,
    ) -> RusotoFuture<DeleteTagsOutput, DeleteTagsError>;

    /// <p>Returns a list of <code>BatchPrediction</code> operations that match the search criteria in the request.</p>
    fn describe_batch_predictions(
        &self,
        input: DescribeBatchPredictionsInput,
    ) -> RusotoFuture<DescribeBatchPredictionsOutput, DescribeBatchPredictionsError>;

    /// <p>Returns a list of <code>DataSource</code> that match the search criteria in the request.</p>
    fn describe_data_sources(
        &self,
        input: DescribeDataSourcesInput,
    ) -> RusotoFuture<DescribeDataSourcesOutput, DescribeDataSourcesError>;

    /// <p>Returns a list of <code>DescribeEvaluations</code> that match the search criteria in the request.</p>
    fn describe_evaluations(
        &self,
        input: DescribeEvaluationsInput,
    ) -> RusotoFuture<DescribeEvaluationsOutput, DescribeEvaluationsError>;

    /// <p>Returns a list of <code>MLModel</code> that match the search criteria in the request.</p>
    fn describe_ml_models(
        &self,
        input: DescribeMLModelsInput,
    ) -> RusotoFuture<DescribeMLModelsOutput, DescribeMLModelsError>;

    /// <p>Describes one or more of the tags for your Amazon ML object.</p>
    fn describe_tags(
        &self,
        input: DescribeTagsInput,
    ) -> RusotoFuture<DescribeTagsOutput, DescribeTagsError>;

    /// <p>Returns a <code>BatchPrediction</code> that includes detailed metadata, status, and data file information for a <code>Batch Prediction</code> request.</p>
    fn get_batch_prediction(
        &self,
        input: GetBatchPredictionInput,
    ) -> RusotoFuture<GetBatchPredictionOutput, GetBatchPredictionError>;

    /// <p>Returns a <code>DataSource</code> that includes metadata and data file information, as well as the current status of the <code>DataSource</code>.</p> <p><code>GetDataSource</code> provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.</p>
    fn get_data_source(
        &self,
        input: GetDataSourceInput,
    ) -> RusotoFuture<GetDataSourceOutput, GetDataSourceError>;

    /// <p>Returns an <code>Evaluation</code> that includes metadata as well as the current status of the <code>Evaluation</code>.</p>
    fn get_evaluation(
        &self,
        input: GetEvaluationInput,
    ) -> RusotoFuture<GetEvaluationOutput, GetEvaluationError>;

    /// <p>Returns an <code>MLModel</code> that includes detailed metadata, data source information, and the current status of the <code>MLModel</code>.</p> <p><code>GetMLModel</code> provides results in normal or verbose format. </p>
    fn get_ml_model(
        &self,
        input: GetMLModelInput,
    ) -> RusotoFuture<GetMLModelOutput, GetMLModelError>;

    /// <p><p>Generates a prediction for the observation using the specified <code>ML Model</code>.</p> <note><title>Note</title> <p>Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.</p></note></p>
    fn predict(&self, input: PredictInput) -> RusotoFuture<PredictOutput, PredictError>;

    /// <p>Updates the <code>BatchPredictionName</code> of a <code>BatchPrediction</code>.</p> <p>You can use the <code>GetBatchPrediction</code> operation to view the contents of the updated data element.</p>
    fn update_batch_prediction(
        &self,
        input: UpdateBatchPredictionInput,
    ) -> RusotoFuture<UpdateBatchPredictionOutput, UpdateBatchPredictionError>;

    /// <p>Updates the <code>DataSourceName</code> of a <code>DataSource</code>.</p> <p>You can use the <code>GetDataSource</code> operation to view the contents of the updated data element.</p>
    fn update_data_source(
        &self,
        input: UpdateDataSourceInput,
    ) -> RusotoFuture<UpdateDataSourceOutput, UpdateDataSourceError>;

    /// <p>Updates the <code>EvaluationName</code> of an <code>Evaluation</code>.</p> <p>You can use the <code>GetEvaluation</code> operation to view the contents of the updated data element.</p>
    fn update_evaluation(
        &self,
        input: UpdateEvaluationInput,
    ) -> RusotoFuture<UpdateEvaluationOutput, UpdateEvaluationError>;

    /// <p>Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of an <code>MLModel</code>.</p> <p>You can use the <code>GetMLModel</code> operation to view the contents of the updated data element.</p>
    fn update_ml_model(
        &self,
        input: UpdateMLModelInput,
    ) -> RusotoFuture<UpdateMLModelOutput, UpdateMLModelError>;
}
/// A client for the Amazon Machine Learning API.
#[derive(Clone)]
pub struct MachineLearningClient {
    client: Client,
    region: region::Region,
}

impl MachineLearningClient {
    /// Creates a client backed by the default tokio event loop.
    ///
    /// The client will use the default credentials provider and tls client.
    pub fn new(region: region::Region) -> MachineLearningClient {
        MachineLearningClient {
            client: Client::shared(),
            region,
        }
    }

    pub fn new_with<P, D>(
        request_dispatcher: D,
        credentials_provider: P,
        region: region::Region,
    ) -> MachineLearningClient
    where
        P: ProvideAwsCredentials + Send + Sync + 'static,
        P::Future: Send,
        D: DispatchSignedRequest + Send + Sync + 'static,
        D::Future: Send,
    {
        MachineLearningClient {
            client: Client::new_with(credentials_provider, request_dispatcher),
            region,
        }
    }
}

impl MachineLearning for MachineLearningClient {
    /// <p>Adds one or more tags to an object, up to a limit of 10. Each tag consists of a key and an optional value. If you add a tag using a key that is already associated with the ML object, <code>AddTags</code> updates the tag's value.</p>
    fn add_tags(&self, input: AddTagsInput) -> RusotoFuture<AddTagsOutput, AddTagsError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.AddTags");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response).deserialize::<AddTagsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(AddTagsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Generates predictions for a group of observations. The observations to process exist in one or more data files referenced by a <code>DataSource</code>. This operation creates a new <code>BatchPrediction</code>, and uses an <code>MLModel</code> and the data files referenced by the <code>DataSource</code> as information sources. </p> <p><code>CreateBatchPrediction</code> is an asynchronous operation. In response to <code>CreateBatchPrediction</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>BatchPrediction</code> status to <code>PENDING</code>. After the <code>BatchPrediction</code> completes, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can poll for status updates by using the <a>GetBatchPrediction</a> operation and checking the <code>Status</code> parameter of the result. After the <code>COMPLETED</code> status appears, the results are available in the location specified by the <code>OutputUri</code> parameter.</p>
    fn create_batch_prediction(
        &self,
        input: CreateBatchPredictionInput,
    ) -> RusotoFuture<CreateBatchPredictionOutput, CreateBatchPredictionError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.CreateBatchPrediction");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateBatchPredictionOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(CreateBatchPredictionError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Creates a <code>DataSource</code> object from an <a href="http://aws.amazon.com/rds/"> Amazon Relational Database Service</a> (Amazon RDS). A <code>DataSource</code> references data that can be used to perform <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.</p> <p><code>CreateDataSourceFromRDS</code> is an asynchronous operation. In response to <code>CreateDataSourceFromRDS</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>DataSource</code> status to <code>PENDING</code>. After the <code>DataSource</code> is created and ready for use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>. <code>DataSource</code> in the <code>COMPLETED</code> or <code>PENDING</code> state can be used only to perform <code>&gt;CreateMLModel</code>&gt;, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML cannot accept the input source, it sets the <code>Status</code> parameter to <code>FAILED</code> and includes an error message in the <code>Message</code> attribute of the <code>GetDataSource</code> operation response. </p>
    fn create_data_source_from_rds(
        &self,
        input: CreateDataSourceFromRDSInput,
    ) -> RusotoFuture<CreateDataSourceFromRDSOutput, CreateDataSourceFromRDSError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.CreateDataSourceFromRDS");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateDataSourceFromRDSOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(CreateDataSourceFromRDSError::from_response(response))
                }))
            }
        })
    }

    /// <p><p>Creates a <code>DataSource</code> from a database hosted on an Amazon Redshift cluster. A <code>DataSource</code> references data that can be used to perform either <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.</p> <p><code>CreateDataSourceFromRedshift</code> is an asynchronous operation. In response to <code>CreateDataSourceFromRedshift</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>DataSource</code> status to <code>PENDING</code>. After the <code>DataSource</code> is created and ready for use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>. <code>DataSource</code> in <code>COMPLETED</code> or <code>PENDING</code> states can be used to perform only <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML can&#39;t accept the input source, it sets the <code>Status</code> parameter to <code>FAILED</code> and includes an error message in the <code>Message</code> attribute of the <code>GetDataSource</code> operation response. </p> <p>The observations should be contained in the database hosted on an Amazon Redshift cluster and should be specified by a <code>SelectSqlQuery</code> query. Amazon ML executes an <code>Unload</code> command in Amazon Redshift to transfer the result set of the <code>SelectSqlQuery</code> query to <code>S3StagingLocation</code>.</p> <p>After the <code>DataSource</code> has been created, it&#39;s ready for use in evaluations and batch predictions. If you plan to use the <code>DataSource</code> to train an <code>MLModel</code>, the <code>DataSource</code> also requires a recipe. A recipe describes how each input variable will be used in training an <code>MLModel</code>. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.</p> &lt;?oxy<em>insert</em>start author=&quot;laurama&quot; timestamp=&quot;20160406T153842-0700&quot;&gt;<p>You can&#39;t change an existing datasource, but you can copy and modify the settings from an existing Amazon Redshift datasource to create a new datasource. To do so, call <code>GetDataSource</code> for an existing datasource and copy the values to a <code>CreateDataSource</code> call. Change the settings that you want to change and make sure that all required fields have the appropriate values.</p> &lt;?oxy<em>insert</em>end&gt;</p>
    fn create_data_source_from_redshift(
        &self,
        input: CreateDataSourceFromRedshiftInput,
    ) -> RusotoFuture<CreateDataSourceFromRedshiftOutput, CreateDataSourceFromRedshiftError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "AmazonML_20141212.CreateDataSourceFromRedshift",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateDataSourceFromRedshiftOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(CreateDataSourceFromRedshiftError::from_response(response))
                }))
            }
        })
    }

    /// <p>Creates a <code>DataSource</code> object. A <code>DataSource</code> references data that can be used to perform <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.</p> <p><code>CreateDataSourceFromS3</code> is an asynchronous operation. In response to <code>CreateDataSourceFromS3</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>DataSource</code> status to <code>PENDING</code>. After the <code>DataSource</code> has been created and is ready for use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>. <code>DataSource</code> in the <code>COMPLETED</code> or <code>PENDING</code> state can be used to perform only <code>CreateMLModel</code>, <code>CreateEvaluation</code> or <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML can't accept the input source, it sets the <code>Status</code> parameter to <code>FAILED</code> and includes an error message in the <code>Message</code> attribute of the <code>GetDataSource</code> operation response. </p> <p>The observation data used in a <code>DataSource</code> should be ready to use; that is, it should have a consistent structure, and missing data values should be kept to a minimum. The observation data must reside in one or more .csv files in an Amazon Simple Storage Service (Amazon S3) location, along with a schema that describes the data items by name and type. The same schema must be used for all of the data files referenced by the <code>DataSource</code>. </p> <p>After the <code>DataSource</code> has been created, it's ready to use in evaluations and batch predictions. If you plan to use the <code>DataSource</code> to train an <code>MLModel</code>, the <code>DataSource</code> also needs a recipe. A recipe describes how each input variable will be used in training an <code>MLModel</code>. Will the variable be included or excluded from training? Will the variable be manipulated; for example, will it be combined with another variable or will it be split apart into word combinations? The recipe provides answers to these questions.</p>
    fn create_data_source_from_s3(
        &self,
        input: CreateDataSourceFromS3Input,
    ) -> RusotoFuture<CreateDataSourceFromS3Output, CreateDataSourceFromS3Error> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.CreateDataSourceFromS3");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateDataSourceFromS3Output, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(CreateDataSourceFromS3Error::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Creates a new <code>Evaluation</code> of an <code>MLModel</code>. An <code>MLModel</code> is evaluated on a set of observations associated to a <code>DataSource</code>. Like a <code>DataSource</code> for an <code>MLModel</code>, the <code>DataSource</code> for an <code>Evaluation</code> contains values for the <code>Target Variable</code>. The <code>Evaluation</code> compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective the <code>MLModel</code> functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the corresponding <code>MLModelType</code>: <code>BINARY</code>, <code>REGRESSION</code> or <code>MULTICLASS</code>. </p> <p><code>CreateEvaluation</code> is an asynchronous operation. In response to <code>CreateEvaluation</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the evaluation status to <code>PENDING</code>. After the <code>Evaluation</code> is created and ready for use, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can use the <code>GetEvaluation</code> operation to check progress of the evaluation during the creation operation.</p>
    fn create_evaluation(
        &self,
        input: CreateEvaluationInput,
    ) -> RusotoFuture<CreateEvaluationOutput, CreateEvaluationError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.CreateEvaluation");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateEvaluationOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateEvaluationError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates a new <code>MLModel</code> using the <code>DataSource</code> and the recipe as information sources. </p> <p>An <code>MLModel</code> is nearly immutable. Users can update only the <code>MLModelName</code> and the <code>ScoreThreshold</code> in an <code>MLModel</code> without creating a new <code>MLModel</code>. </p> <p><code>CreateMLModel</code> is an asynchronous operation. In response to <code>CreateMLModel</code>, Amazon Machine Learning (Amazon ML) immediately returns and sets the <code>MLModel</code> status to <code>PENDING</code>. After the <code>MLModel</code> has been created and ready is for use, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can use the <code>GetMLModel</code> operation to check the progress of the <code>MLModel</code> during the creation operation.</p> <p> <code>CreateMLModel</code> requires a <code>DataSource</code> with computed statistics, which can be created by setting <code>ComputeStatistics</code> to <code>true</code> in <code>CreateDataSourceFromRDS</code>, <code>CreateDataSourceFromS3</code>, or <code>CreateDataSourceFromRedshift</code> operations. </p>
    fn create_ml_model(
        &self,
        input: CreateMLModelInput,
    ) -> RusotoFuture<CreateMLModelOutput, CreateMLModelError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.CreateMLModel");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateMLModelOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateMLModelError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates a real-time endpoint for the <code>MLModel</code>. The endpoint contains the URI of the <code>MLModel</code>; that is, the location to send real-time prediction requests for the specified <code>MLModel</code>.</p>
    fn create_realtime_endpoint(
        &self,
        input: CreateRealtimeEndpointInput,
    ) -> RusotoFuture<CreateRealtimeEndpointOutput, CreateRealtimeEndpointError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.CreateRealtimeEndpoint");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateRealtimeEndpointOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(CreateRealtimeEndpointError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Assigns the DELETED status to a <code>BatchPrediction</code>, rendering it unusable.</p> <p>After using the <code>DeleteBatchPrediction</code> operation, you can use the <a>GetBatchPrediction</a> operation to verify that the status of the <code>BatchPrediction</code> changed to DELETED.</p> <p><b>Caution:</b> The result of the <code>DeleteBatchPrediction</code> operation is irreversible.</p>
    fn delete_batch_prediction(
        &self,
        input: DeleteBatchPredictionInput,
    ) -> RusotoFuture<DeleteBatchPredictionOutput, DeleteBatchPredictionError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DeleteBatchPrediction");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteBatchPredictionOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DeleteBatchPredictionError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Assigns the DELETED status to a <code>DataSource</code>, rendering it unusable.</p> <p>After using the <code>DeleteDataSource</code> operation, you can use the <a>GetDataSource</a> operation to verify that the status of the <code>DataSource</code> changed to DELETED.</p> <p><b>Caution:</b> The results of the <code>DeleteDataSource</code> operation are irreversible.</p>
    fn delete_data_source(
        &self,
        input: DeleteDataSourceInput,
    ) -> RusotoFuture<DeleteDataSourceOutput, DeleteDataSourceError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DeleteDataSource");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteDataSourceOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteDataSourceError::from_response(response))),
                )
            }
        })
    }

    /// <p><p>Assigns the <code>DELETED</code> status to an <code>Evaluation</code>, rendering it unusable.</p> <p>After invoking the <code>DeleteEvaluation</code> operation, you can use the <code>GetEvaluation</code> operation to verify that the status of the <code>Evaluation</code> changed to <code>DELETED</code>.</p> <caution><title>Caution</title> <p>The results of the <code>DeleteEvaluation</code> operation are irreversible.</p></caution></p>
    fn delete_evaluation(
        &self,
        input: DeleteEvaluationInput,
    ) -> RusotoFuture<DeleteEvaluationOutput, DeleteEvaluationError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DeleteEvaluation");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteEvaluationOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteEvaluationError::from_response(response))),
                )
            }
        })
    }

    /// <p>Assigns the <code>DELETED</code> status to an <code>MLModel</code>, rendering it unusable.</p> <p>After using the <code>DeleteMLModel</code> operation, you can use the <code>GetMLModel</code> operation to verify that the status of the <code>MLModel</code> changed to DELETED.</p> <p><b>Caution:</b> The result of the <code>DeleteMLModel</code> operation is irreversible.</p>
    fn delete_ml_model(
        &self,
        input: DeleteMLModelInput,
    ) -> RusotoFuture<DeleteMLModelOutput, DeleteMLModelError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DeleteMLModel");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteMLModelOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteMLModelError::from_response(response))),
                )
            }
        })
    }

    /// <p>Deletes a real time endpoint of an <code>MLModel</code>.</p>
    fn delete_realtime_endpoint(
        &self,
        input: DeleteRealtimeEndpointInput,
    ) -> RusotoFuture<DeleteRealtimeEndpointOutput, DeleteRealtimeEndpointError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DeleteRealtimeEndpoint");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteRealtimeEndpointOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DeleteRealtimeEndpointError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.</p> <p>If you specify a tag that doesn't exist, Amazon ML ignores it.</p>
    fn delete_tags(
        &self,
        input: DeleteTagsInput,
    ) -> RusotoFuture<DeleteTagsOutput, DeleteTagsError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DeleteTags");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteTagsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteTagsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns a list of <code>BatchPrediction</code> operations that match the search criteria in the request.</p>
    fn describe_batch_predictions(
        &self,
        input: DescribeBatchPredictionsInput,
    ) -> RusotoFuture<DescribeBatchPredictionsOutput, DescribeBatchPredictionsError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DescribeBatchPredictions");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeBatchPredictionsOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(DescribeBatchPredictionsError::from_response(response))
                }))
            }
        })
    }

    /// <p>Returns a list of <code>DataSource</code> that match the search criteria in the request.</p>
    fn describe_data_sources(
        &self,
        input: DescribeDataSourcesInput,
    ) -> RusotoFuture<DescribeDataSourcesOutput, DescribeDataSourcesError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DescribeDataSources");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeDataSourcesOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeDataSourcesError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Returns a list of <code>DescribeEvaluations</code> that match the search criteria in the request.</p>
    fn describe_evaluations(
        &self,
        input: DescribeEvaluationsInput,
    ) -> RusotoFuture<DescribeEvaluationsOutput, DescribeEvaluationsError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DescribeEvaluations");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeEvaluationsOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeEvaluationsError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Returns a list of <code>MLModel</code> that match the search criteria in the request.</p>
    fn describe_ml_models(
        &self,
        input: DescribeMLModelsInput,
    ) -> RusotoFuture<DescribeMLModelsOutput, DescribeMLModelsError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DescribeMLModels");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeMLModelsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DescribeMLModelsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Describes one or more of the tags for your Amazon ML object.</p>
    fn describe_tags(
        &self,
        input: DescribeTagsInput,
    ) -> RusotoFuture<DescribeTagsOutput, DescribeTagsError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.DescribeTags");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeTagsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DescribeTagsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns a <code>BatchPrediction</code> that includes detailed metadata, status, and data file information for a <code>Batch Prediction</code> request.</p>
    fn get_batch_prediction(
        &self,
        input: GetBatchPredictionInput,
    ) -> RusotoFuture<GetBatchPredictionOutput, GetBatchPredictionError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.GetBatchPrediction");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetBatchPredictionOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetBatchPredictionError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns a <code>DataSource</code> that includes metadata and data file information, as well as the current status of the <code>DataSource</code>.</p> <p><code>GetDataSource</code> provides results in normal or verbose format. The verbose format adds the schema description and the list of files pointed to by the DataSource to the normal format.</p>
    fn get_data_source(
        &self,
        input: GetDataSourceInput,
    ) -> RusotoFuture<GetDataSourceOutput, GetDataSourceError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.GetDataSource");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetDataSourceOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetDataSourceError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns an <code>Evaluation</code> that includes metadata as well as the current status of the <code>Evaluation</code>.</p>
    fn get_evaluation(
        &self,
        input: GetEvaluationInput,
    ) -> RusotoFuture<GetEvaluationOutput, GetEvaluationError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.GetEvaluation");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetEvaluationOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetEvaluationError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns an <code>MLModel</code> that includes detailed metadata, data source information, and the current status of the <code>MLModel</code>.</p> <p><code>GetMLModel</code> provides results in normal or verbose format. </p>
    fn get_ml_model(
        &self,
        input: GetMLModelInput,
    ) -> RusotoFuture<GetMLModelOutput, GetMLModelError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.GetMLModel");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetMLModelOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetMLModelError::from_response(response))),
                )
            }
        })
    }

    /// <p><p>Generates a prediction for the observation using the specified <code>ML Model</code>.</p> <note><title>Note</title> <p>Not all response parameters will be populated. Whether a response parameter is populated depends on the type of model requested.</p></note></p>
    fn predict(&self, input: PredictInput) -> RusotoFuture<PredictOutput, PredictError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.Predict");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response).deserialize::<PredictOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(PredictError::from_response(response))),
                )
            }
        })
    }

    /// <p>Updates the <code>BatchPredictionName</code> of a <code>BatchPrediction</code>.</p> <p>You can use the <code>GetBatchPrediction</code> operation to view the contents of the updated data element.</p>
    fn update_batch_prediction(
        &self,
        input: UpdateBatchPredictionInput,
    ) -> RusotoFuture<UpdateBatchPredictionOutput, UpdateBatchPredictionError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.UpdateBatchPrediction");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateBatchPredictionOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(UpdateBatchPredictionError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Updates the <code>DataSourceName</code> of a <code>DataSource</code>.</p> <p>You can use the <code>GetDataSource</code> operation to view the contents of the updated data element.</p>
    fn update_data_source(
        &self,
        input: UpdateDataSourceInput,
    ) -> RusotoFuture<UpdateDataSourceOutput, UpdateDataSourceError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.UpdateDataSource");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateDataSourceOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(UpdateDataSourceError::from_response(response))),
                )
            }
        })
    }

    /// <p>Updates the <code>EvaluationName</code> of an <code>Evaluation</code>.</p> <p>You can use the <code>GetEvaluation</code> operation to view the contents of the updated data element.</p>
    fn update_evaluation(
        &self,
        input: UpdateEvaluationInput,
    ) -> RusotoFuture<UpdateEvaluationOutput, UpdateEvaluationError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.UpdateEvaluation");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateEvaluationOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(UpdateEvaluationError::from_response(response))),
                )
            }
        })
    }

    /// <p>Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of an <code>MLModel</code>.</p> <p>You can use the <code>GetMLModel</code> operation to view the contents of the updated data element.</p>
    fn update_ml_model(
        &self,
        input: UpdateMLModelInput,
    ) -> RusotoFuture<UpdateMLModelOutput, UpdateMLModelError> {
        let mut request = SignedRequest::new("POST", "machinelearning", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "AmazonML_20141212.UpdateMLModel");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateMLModelOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(UpdateMLModelError::from_response(response))),
                )
            }
        })
    }
}