1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
// =================================================================
//
//                           * WARNING *
//
//                    This file is generated!
//
//  Changes made to this file will be overwritten. If changes are
//  required to the generated code, the service_crategen project
//  must be updated to generate the changes.
//
// =================================================================

use std::error::Error;
use std::fmt;

#[allow(warnings)]
use futures::future;
use futures::Future;
use rusoto_core::credential::ProvideAwsCredentials;
use rusoto_core::region;
use rusoto_core::request::{BufferedHttpResponse, DispatchSignedRequest};
use rusoto_core::{Client, RusotoError, RusotoFuture};

use rusoto_core::proto;
use rusoto_core::signature::SignedRequest;
use serde_json;
/// <p>Structure containing the estimated age range, in years, for a face.</p> <p>Amazon Rekognition estimates an age range for faces detected in the input image. Estimated age ranges can overlap. A face of a 5-year-old might have an estimated range of 4-6, while the face of a 6-year-old might have an estimated range of 4-8.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct AgeRange {
    /// <p>The highest estimated age.</p>
    #[serde(rename = "High")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub high: Option<i64>,
    /// <p>The lowest estimated age.</p>
    #[serde(rename = "Low")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub low: Option<i64>,
}

/// <p>Indicates whether or not the face has a beard, and the confidence level in the determination.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Beard {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Boolean value that indicates whether the face has beard or not.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<bool>,
}

/// <p><p>Identifies the bounding box around the label, face, or text. The <code>left</code> (x-coordinate) and <code>top</code> (y-coordinate) are coordinates representing the top and left sides of the bounding box. Note that the upper-left corner of the image is the origin (0,0). </p> <p>The <code>top</code> and <code>left</code> values returned are ratios of the overall image size. For example, if the input image is 700x200 pixels, and the top-left coordinate of the bounding box is 350x50 pixels, the API returns a <code>left</code> value of 0.5 (350/700) and a <code>top</code> value of 0.25 (50/200).</p> <p>The <code>width</code> and <code>height</code> values represent the dimensions of the bounding box as a ratio of the overall image dimension. For example, if the input image is 700x200 pixels, and the bounding box width is 70 pixels, the width returned is 0.1. </p> <note> <p> The bounding box coordinates can have negative values. For example, if Amazon Rekognition is able to detect a face that is at the image edge and is only partially visible, the service can return coordinates that are outside the image bounds and, depending on the image edge, you might get negative values or values greater than 1 for the <code>left</code> or <code>top</code> values. </p> </note></p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct BoundingBox {
    /// <p>Height of the bounding box as a ratio of the overall image height.</p>
    #[serde(rename = "Height")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub height: Option<f32>,
    /// <p>Left coordinate of the bounding box as a ratio of overall image width.</p>
    #[serde(rename = "Left")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub left: Option<f32>,
    /// <p>Top coordinate of the bounding box as a ratio of overall image height.</p>
    #[serde(rename = "Top")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top: Option<f32>,
    /// <p>Width of the bounding box as a ratio of the overall image width.</p>
    #[serde(rename = "Width")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub width: Option<f32>,
}

/// <p>Provides information about a celebrity recognized by the <a>RecognizeCelebrities</a> operation.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Celebrity {
    /// <p>Provides information about the celebrity's face, such as its location on the image.</p>
    #[serde(rename = "Face")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face: Option<ComparedFace>,
    /// <p>A unique identifier for the celebrity. </p>
    #[serde(rename = "Id")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub id: Option<String>,
    /// <p>The confidence, in percentage, that Amazon Rekognition has that the recognized face is the celebrity.</p>
    #[serde(rename = "MatchConfidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub match_confidence: Option<f32>,
    /// <p>The name of the celebrity.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>An array of URLs pointing to additional information about the celebrity. If there is no additional information about the celebrity, this list is empty.</p>
    #[serde(rename = "Urls")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub urls: Option<Vec<String>>,
}

/// <p>Information about a recognized celebrity.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CelebrityDetail {
    /// <p>Bounding box around the body of a celebrity.</p>
    #[serde(rename = "BoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bounding_box: Option<BoundingBox>,
    /// <p>The confidence, in percentage, that Amazon Rekognition has that the recognized face is the celebrity. </p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Face details for the recognized celebrity.</p>
    #[serde(rename = "Face")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face: Option<FaceDetail>,
    /// <p>The unique identifier for the celebrity. </p>
    #[serde(rename = "Id")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub id: Option<String>,
    /// <p>The name of the celebrity.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>An array of URLs pointing to additional celebrity information. </p>
    #[serde(rename = "Urls")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub urls: Option<Vec<String>>,
}

/// <p>Information about a detected celebrity and the time the celebrity was detected in a stored video. For more information, see GetCelebrityRecognition in the Amazon Rekognition Developer Guide.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CelebrityRecognition {
    /// <p>Information about a recognized celebrity.</p>
    #[serde(rename = "Celebrity")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub celebrity: Option<CelebrityDetail>,
    /// <p>The time, in milliseconds from the start of the video, that the celebrity was recognized.</p>
    #[serde(rename = "Timestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub timestamp: Option<i64>,
}

/// <p>Provides information about a face in a target image that matches the source image face analyzed by <code>CompareFaces</code>. The <code>Face</code> property contains the bounding box of the face in the target image. The <code>Similarity</code> property is the confidence that the source image face matches the face in the bounding box.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CompareFacesMatch {
    /// <p>Provides face metadata (bounding box and confidence that the bounding box actually contains a face).</p>
    #[serde(rename = "Face")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face: Option<ComparedFace>,
    /// <p>Level of confidence that the faces match.</p>
    #[serde(rename = "Similarity")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub similarity: Option<f32>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CompareFacesRequest {
    /// <p>The minimum level of confidence in the face matches that a match must meet to be included in the <code>FaceMatches</code> array.</p>
    #[serde(rename = "SimilarityThreshold")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub similarity_threshold: Option<f32>,
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported. </p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "SourceImage")]
    pub source_image: Image,
    /// <p>The target image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported. </p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "TargetImage")]
    pub target_image: Image,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CompareFacesResponse {
    /// <p>An array of faces in the target image that match the source image face. Each <code>CompareFacesMatch</code> object provides the bounding box, the confidence level that the bounding box contains a face, and the similarity score for the face in the bounding box and the face in the source image.</p>
    #[serde(rename = "FaceMatches")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_matches: Option<Vec<CompareFacesMatch>>,
    /// <p>The face in the source image that was used for comparison.</p>
    #[serde(rename = "SourceImageFace")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub source_image_face: Option<ComparedSourceImageFace>,
    /// <p>The value of <code>SourceImageOrientationCorrection</code> is always null.</p> <p>If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image's orientation. Amazon Rekognition uses this orientation information to perform image correction. The bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don't contain Exif metadata.</p> <p>Amazon Rekognition doesn’t perform image correction for images in .png format and .jpeg images without orientation information in the image Exif metadata. The bounding box coordinates aren't translated and represent the object locations before the image is rotated. </p>
    #[serde(rename = "SourceImageOrientationCorrection")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub source_image_orientation_correction: Option<String>,
    /// <p>The value of <code>TargetImageOrientationCorrection</code> is always null.</p> <p>If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image's orientation. Amazon Rekognition uses this orientation information to perform image correction. The bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don't contain Exif metadata.</p> <p>Amazon Rekognition doesn’t perform image correction for images in .png format and .jpeg images without orientation information in the image Exif metadata. The bounding box coordinates aren't translated and represent the object locations before the image is rotated. </p>
    #[serde(rename = "TargetImageOrientationCorrection")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub target_image_orientation_correction: Option<String>,
    /// <p>An array of faces in the target image that did not match the source image face.</p>
    #[serde(rename = "UnmatchedFaces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub unmatched_faces: Option<Vec<ComparedFace>>,
}

/// <p>Provides face metadata for target image faces that are analyzed by <code>CompareFaces</code> and <code>RecognizeCelebrities</code>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ComparedFace {
    /// <p>Bounding box of the face.</p>
    #[serde(rename = "BoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bounding_box: Option<BoundingBox>,
    /// <p>Level of confidence that what the bounding box contains is a face.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>An array of facial landmarks.</p>
    #[serde(rename = "Landmarks")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub landmarks: Option<Vec<Landmark>>,
    /// <p>Indicates the pose of the face as determined by its pitch, roll, and yaw.</p>
    #[serde(rename = "Pose")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub pose: Option<Pose>,
    /// <p>Identifies face image brightness and sharpness. </p>
    #[serde(rename = "Quality")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub quality: Option<ImageQuality>,
}

/// <p>Type that describes the face Amazon Rekognition chose to compare with the faces in the target. This contains a bounding box for the selected face and confidence level that the bounding box contains a face. Note that Amazon Rekognition selects the largest face in the source image for this comparison. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ComparedSourceImageFace {
    /// <p>Bounding box of the face.</p>
    #[serde(rename = "BoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bounding_box: Option<BoundingBox>,
    /// <p>Confidence level that the selected bounding box contains a face.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
}

/// <p>Information about a moderation label detection in a stored video.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ContentModerationDetection {
    /// <p>The moderation label detected by in the stored video.</p>
    #[serde(rename = "ModerationLabel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub moderation_label: Option<ModerationLabel>,
    /// <p>Time, in milliseconds from the beginning of the video, that the moderation label was detected.</p>
    #[serde(rename = "Timestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub timestamp: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateCollectionRequest {
    /// <p>ID for the collection that you are creating.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateCollectionResponse {
    /// <p>Amazon Resource Name (ARN) of the collection. You can use this to manage permissions on your resources. </p>
    #[serde(rename = "CollectionArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub collection_arn: Option<String>,
    /// <p>Version number of the face detection model associated with the collection you are creating.</p>
    #[serde(rename = "FaceModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_model_version: Option<String>,
    /// <p>HTTP status code indicating the result of the operation.</p>
    #[serde(rename = "StatusCode")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_code: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateStreamProcessorRequest {
    /// <p>Kinesis video stream stream that provides the source streaming video. If you are using the AWS CLI, the parameter name is <code>StreamProcessorInput</code>.</p>
    #[serde(rename = "Input")]
    pub input: StreamProcessorInput,
    /// <p>An identifier you assign to the stream processor. You can use <code>Name</code> to manage the stream processor. For example, you can get the current status of the stream processor by calling <a>DescribeStreamProcessor</a>. <code>Name</code> is idempotent. </p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p>Kinesis data stream stream to which Amazon Rekognition Video puts the analysis results. If you are using the AWS CLI, the parameter name is <code>StreamProcessorOutput</code>.</p>
    #[serde(rename = "Output")]
    pub output: StreamProcessorOutput,
    /// <p>ARN of the IAM role that allows access to the stream processor.</p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>Face recognition input parameters to be used by the stream processor. Includes the collection to use for face recognition and the face attributes to detect.</p>
    #[serde(rename = "Settings")]
    pub settings: StreamProcessorSettings,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateStreamProcessorResponse {
    /// <p>ARN for the newly create stream processor.</p>
    #[serde(rename = "StreamProcessorArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stream_processor_arn: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteCollectionRequest {
    /// <p>ID of the collection to delete.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteCollectionResponse {
    /// <p>HTTP status code that indicates the result of the operation.</p>
    #[serde(rename = "StatusCode")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_code: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteFacesRequest {
    /// <p>Collection from which to remove the specific faces.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
    /// <p>An array of face IDs to delete.</p>
    #[serde(rename = "FaceIds")]
    pub face_ids: Vec<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteFacesResponse {
    /// <p>An array of strings (face IDs) of the faces that were deleted.</p>
    #[serde(rename = "DeletedFaces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub deleted_faces: Option<Vec<String>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteStreamProcessorRequest {
    /// <p>The name of the stream processor you want to delete.</p>
    #[serde(rename = "Name")]
    pub name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteStreamProcessorResponse {}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeCollectionRequest {
    /// <p>The ID of the collection to describe.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeCollectionResponse {
    /// <p>The Amazon Resource Name (ARN) of the collection.</p>
    #[serde(rename = "CollectionARN")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub collection_arn: Option<String>,
    /// <p>The number of milliseconds since the Unix epoch time until the creation of the collection. The Unix epoch time is 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January 1970.</p>
    #[serde(rename = "CreationTimestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_timestamp: Option<f64>,
    /// <p>The number of faces that are indexed into the collection. To index faces into a collection, use <a>IndexFaces</a>.</p>
    #[serde(rename = "FaceCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_count: Option<i64>,
    /// <p>The version of the face model that's used by the collection for face detection.</p> <p>For more information, see Model Versioning in the Amazon Rekognition Developer Guide.</p>
    #[serde(rename = "FaceModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_model_version: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeStreamProcessorRequest {
    /// <p>Name of the stream processor for which you want information.</p>
    #[serde(rename = "Name")]
    pub name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeStreamProcessorResponse {
    /// <p>Date and time the stream processor was created</p>
    #[serde(rename = "CreationTimestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_timestamp: Option<f64>,
    /// <p>Kinesis video stream that provides the source streaming video.</p>
    #[serde(rename = "Input")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input: Option<StreamProcessorInput>,
    /// <p>The time, in Unix format, the stream processor was last updated. For example, when the stream processor moves from a running state to a failed state, or when the user starts or stops the stream processor.</p>
    #[serde(rename = "LastUpdateTimestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_update_timestamp: Option<f64>,
    /// <p>Name of the stream processor. </p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>Kinesis data stream to which Amazon Rekognition Video puts the analysis results.</p>
    #[serde(rename = "Output")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub output: Option<StreamProcessorOutput>,
    /// <p>ARN of the IAM role that allows access to the stream processor.</p>
    #[serde(rename = "RoleArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub role_arn: Option<String>,
    /// <p>Face recognition input parameters that are being used by the stream processor. Includes the collection to use for face recognition and the face attributes to detect.</p>
    #[serde(rename = "Settings")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub settings: Option<StreamProcessorSettings>,
    /// <p>Current status of the stream processor.</p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
    /// <p>Detailed status message about the stream processor.</p>
    #[serde(rename = "StatusMessage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_message: Option<String>,
    /// <p>ARN of the stream processor.</p>
    #[serde(rename = "StreamProcessorArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stream_processor_arn: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DetectFacesRequest {
    /// <p>An array of facial attributes you want to be returned. This can be the default list of attributes or all attributes. If you don't specify a value for <code>Attributes</code> or if you specify <code>["DEFAULT"]</code>, the API returns the following subset of facial attributes: <code>BoundingBox</code>, <code>Confidence</code>, <code>Pose</code>, <code>Quality</code>, and <code>Landmarks</code>. If you provide <code>["ALL"]</code>, all facial attributes are returned, but the operation takes longer to complete.</p> <p>If you provide both, <code>["ALL", "DEFAULT"]</code>, the service uses a logical AND operator to determine which attributes to return (in this case, all attributes). </p>
    #[serde(rename = "Attributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub attributes: Option<Vec<String>>,
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported. </p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "Image")]
    pub image: Image,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DetectFacesResponse {
    /// <p>Details of each face found in the image. </p>
    #[serde(rename = "FaceDetails")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_details: Option<Vec<FaceDetail>>,
    /// <p>The value of <code>OrientationCorrection</code> is always null.</p> <p>If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image's orientation. Amazon Rekognition uses this orientation information to perform image correction. The bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don't contain Exif metadata.</p> <p>Amazon Rekognition doesn’t perform image correction for images in .png format and .jpeg images without orientation information in the image Exif metadata. The bounding box coordinates aren't translated and represent the object locations before the image is rotated. </p>
    #[serde(rename = "OrientationCorrection")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub orientation_correction: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DetectLabelsRequest {
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. Images stored in an S3 Bucket do not need to be base64-encoded.</p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "Image")]
    pub image: Image,
    /// <p>Maximum number of labels you want the service to return in the response. The service returns the specified number of highest confidence labels. </p>
    #[serde(rename = "MaxLabels")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_labels: Option<i64>,
    /// <p>Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return any labels with confidence lower than this specified value.</p> <p>If <code>MinConfidence</code> is not specified, the operation returns labels with a confidence values greater than or equal to 55 percent.</p>
    #[serde(rename = "MinConfidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub min_confidence: Option<f32>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DetectLabelsResponse {
    /// <p>Version number of the label detection model that was used to detect labels.</p>
    #[serde(rename = "LabelModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub label_model_version: Option<String>,
    /// <p>An array of labels for the real-world objects detected. </p>
    #[serde(rename = "Labels")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labels: Option<Vec<Label>>,
    /// <p>The value of <code>OrientationCorrection</code> is always null.</p> <p>If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image's orientation. Amazon Rekognition uses this orientation information to perform image correction. The bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don't contain Exif metadata.</p> <p>Amazon Rekognition doesn’t perform image correction for images in .png format and .jpeg images without orientation information in the image Exif metadata. The bounding box coordinates aren't translated and represent the object locations before the image is rotated. </p>
    #[serde(rename = "OrientationCorrection")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub orientation_correction: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DetectModerationLabelsRequest {
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported. </p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "Image")]
    pub image: Image,
    /// <p>Specifies the minimum confidence level for the labels to return. Amazon Rekognition doesn't return any labels with a confidence level lower than this specified value.</p> <p>If you don't specify <code>MinConfidence</code>, the operation returns labels with confidence values greater than or equal to 50 percent.</p>
    #[serde(rename = "MinConfidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub min_confidence: Option<f32>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DetectModerationLabelsResponse {
    /// <p>Array of detected Moderation labels and the time, in millseconds from the start of the video, they were detected.</p>
    #[serde(rename = "ModerationLabels")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub moderation_labels: Option<Vec<ModerationLabel>>,
    /// <p>Version number of the moderation detection model that was used to detect unsafe content.</p>
    #[serde(rename = "ModerationModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub moderation_model_version: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DetectTextRequest {
    /// <p>The input image as base64-encoded bytes or an Amazon S3 object. If you use the AWS CLI to call Amazon Rekognition operations, you can't pass image bytes. </p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "Image")]
    pub image: Image,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DetectTextResponse {
    /// <p>An array of text that was detected in the input image.</p>
    #[serde(rename = "TextDetections")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub text_detections: Option<Vec<TextDetection>>,
}

/// <p>The emotions detected on the face, and the confidence level in the determination. For example, HAPPY, SAD, and ANGRY.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Emotion {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Type of emotion detected.</p>
    #[serde(rename = "Type")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub type_: Option<String>,
}

/// <p>Indicates whether or not the eyes on the face are open, and the confidence level in the determination.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct EyeOpen {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Boolean value that indicates whether the eyes on the face are open.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<bool>,
}

/// <p>Indicates whether or not the face is wearing eye glasses, and the confidence level in the determination.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Eyeglasses {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Boolean value that indicates whether the face is wearing eye glasses or not.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<bool>,
}

/// <p>Describes the face properties such as the bounding box, face ID, image ID of the input image, and external image ID that you assigned. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Face {
    /// <p>Bounding box of the face.</p>
    #[serde(rename = "BoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bounding_box: Option<BoundingBox>,
    /// <p>Confidence level that the bounding box contains a face (and not a different object such as a tree).</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Identifier that you assign to all the faces in the input image.</p>
    #[serde(rename = "ExternalImageId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub external_image_id: Option<String>,
    /// <p>Unique identifier that Amazon Rekognition assigns to the face.</p>
    #[serde(rename = "FaceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_id: Option<String>,
    /// <p>Unique identifier that Amazon Rekognition assigns to the input image.</p>
    #[serde(rename = "ImageId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub image_id: Option<String>,
}

/// <p>Structure containing attributes of the face that the algorithm detected.</p> <p>A <code>FaceDetail</code> object contains either the default facial attributes or all facial attributes. The default attributes are <code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>.</p> <p> <a>GetFaceDetection</a> is the only Amazon Rekognition Video stored video operation that can return a <code>FaceDetail</code> object with all attributes. To specify which attributes to return, use the <code>FaceAttributes</code> input parameter for <a>StartFaceDetection</a>. The following Amazon Rekognition Video operations return only the default attributes. The corresponding Start operations don't have a <code>FaceAttributes</code> input parameter.</p> <ul> <li> <p>GetCelebrityRecognition</p> </li> <li> <p>GetPersonTracking</p> </li> <li> <p>GetFaceSearch</p> </li> </ul> <p>The Amazon Rekognition Image <a>DetectFaces</a> and <a>IndexFaces</a> operations can return all facial attributes. To specify which attributes to return, use the <code>Attributes</code> input parameter for <code>DetectFaces</code>. For <code>IndexFaces</code>, use the <code>DetectAttributes</code> input parameter.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct FaceDetail {
    /// <p>The estimated age range, in years, for the face. Low represents the lowest estimated age and High represents the highest estimated age.</p>
    #[serde(rename = "AgeRange")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub age_range: Option<AgeRange>,
    /// <p>Indicates whether or not the face has a beard, and the confidence level in the determination.</p>
    #[serde(rename = "Beard")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub beard: Option<Beard>,
    /// <p>Bounding box of the face. Default attribute.</p>
    #[serde(rename = "BoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bounding_box: Option<BoundingBox>,
    /// <p>Confidence level that the bounding box contains a face (and not a different object such as a tree). Default attribute.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>The emotions detected on the face, and the confidence level in the determination. For example, HAPPY, SAD, and ANGRY. </p>
    #[serde(rename = "Emotions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub emotions: Option<Vec<Emotion>>,
    /// <p>Indicates whether or not the face is wearing eye glasses, and the confidence level in the determination.</p>
    #[serde(rename = "Eyeglasses")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub eyeglasses: Option<Eyeglasses>,
    /// <p>Indicates whether or not the eyes on the face are open, and the confidence level in the determination.</p>
    #[serde(rename = "EyesOpen")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub eyes_open: Option<EyeOpen>,
    /// <p>Gender of the face and the confidence level in the determination.</p>
    #[serde(rename = "Gender")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub gender: Option<Gender>,
    /// <p>Indicates the location of landmarks on the face. Default attribute.</p>
    #[serde(rename = "Landmarks")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub landmarks: Option<Vec<Landmark>>,
    /// <p>Indicates whether or not the mouth on the face is open, and the confidence level in the determination.</p>
    #[serde(rename = "MouthOpen")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub mouth_open: Option<MouthOpen>,
    /// <p>Indicates whether or not the face has a mustache, and the confidence level in the determination.</p>
    #[serde(rename = "Mustache")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub mustache: Option<Mustache>,
    /// <p>Indicates the pose of the face as determined by its pitch, roll, and yaw. Default attribute.</p>
    #[serde(rename = "Pose")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub pose: Option<Pose>,
    /// <p>Identifies image brightness and sharpness. Default attribute.</p>
    #[serde(rename = "Quality")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub quality: Option<ImageQuality>,
    /// <p>Indicates whether or not the face is smiling, and the confidence level in the determination.</p>
    #[serde(rename = "Smile")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub smile: Option<Smile>,
    /// <p>Indicates whether or not the face is wearing sunglasses, and the confidence level in the determination.</p>
    #[serde(rename = "Sunglasses")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sunglasses: Option<Sunglasses>,
}

/// <p>Information about a face detected in a video analysis request and the time the face was detected in the video. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct FaceDetection {
    /// <p>The face properties for the detected face.</p>
    #[serde(rename = "Face")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face: Option<FaceDetail>,
    /// <p>Time, in milliseconds from the start of the video, that the face was detected.</p>
    #[serde(rename = "Timestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub timestamp: Option<i64>,
}

/// <p>Provides face metadata. In addition, it also provides the confidence in the match of this face with the input face.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct FaceMatch {
    /// <p>Describes the face properties such as the bounding box, face ID, image ID of the source image, and external image ID that you assigned.</p>
    #[serde(rename = "Face")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face: Option<Face>,
    /// <p>Confidence in the match of this face with the input face.</p>
    #[serde(rename = "Similarity")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub similarity: Option<f32>,
}

/// <p>Object containing both the face metadata (stored in the backend database), and facial attributes that are detected but aren't stored in the database.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct FaceRecord {
    /// <p>Describes the face properties such as the bounding box, face ID, image ID of the input image, and external image ID that you assigned. </p>
    #[serde(rename = "Face")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face: Option<Face>,
    /// <p>Structure containing attributes of the face that the algorithm detected.</p>
    #[serde(rename = "FaceDetail")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_detail: Option<FaceDetail>,
}

/// <p>Input face recognition parameters for an Amazon Rekognition stream processor. <code>FaceRecognitionSettings</code> is a request parameter for <a>CreateStreamProcessor</a>.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct FaceSearchSettings {
    /// <p>The ID of a collection that contains faces that you want to search for.</p>
    #[serde(rename = "CollectionId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub collection_id: Option<String>,
    /// <p>Minimum face match confidence score that must be met to return a result for a recognized face. Default is 70. 0 is the lowest confidence. 100 is the highest confidence.</p>
    #[serde(rename = "FaceMatchThreshold")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_match_threshold: Option<f32>,
}

/// <p>Gender of the face and the confidence level in the determination.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Gender {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Gender of the face.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<String>,
}

/// <p>Information about where the text detected by <a>DetectText</a> is located on an image.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Geometry {
    /// <p>An axis-aligned coarse representation of the detected text's location on the image.</p>
    #[serde(rename = "BoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bounding_box: Option<BoundingBox>,
    /// <p>Within the bounding box, a fine-grained polygon around the detected text.</p>
    #[serde(rename = "Polygon")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub polygon: Option<Vec<Point>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetCelebrityInfoRequest {
    /// <p>The ID for the celebrity. You get the celebrity ID from a call to the <a>RecognizeCelebrities</a> operation, which recognizes celebrities in an image. </p>
    #[serde(rename = "Id")]
    pub id: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetCelebrityInfoResponse {
    /// <p>The name of the celebrity.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>An array of URLs pointing to additional celebrity information. </p>
    #[serde(rename = "Urls")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub urls: Option<Vec<String>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetCelebrityRecognitionRequest {
    /// <p>Job identifier for the required celebrity recognition analysis. You can get the job identifer from a call to <code>StartCelebrityRecognition</code>.</p>
    #[serde(rename = "JobId")]
    pub job_id: String,
    /// <p>Maximum number of results to return per paginated call. The largest value you can specify is 1000. If you specify a value greater than 1000, a maximum of 1000 results is returned. The default value is 1000.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the previous response was incomplete (because there is more recognized celebrities to retrieve), Amazon Rekognition Video returns a pagination token in the response. You can use this pagination token to retrieve the next set of celebrities. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>Sort to use for celebrities returned in <code>Celebrities</code> field. Specify <code>ID</code> to sort by the celebrity identifier, specify <code>TIMESTAMP</code> to sort by the time the celebrity was recognized.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetCelebrityRecognitionResponse {
    /// <p>Array of celebrities recognized in the video.</p>
    #[serde(rename = "Celebrities")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub celebrities: Option<Vec<CelebrityRecognition>>,
    /// <p>The current status of the celebrity recognition job.</p>
    #[serde(rename = "JobStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_status: Option<String>,
    /// <p>If the response is truncated, Amazon Rekognition Video returns this token that you can use in the subsequent request to retrieve the next set of celebrities.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>If the job fails, <code>StatusMessage</code> provides a descriptive error message.</p>
    #[serde(rename = "StatusMessage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_message: Option<String>,
    /// <p>Information about a video that Amazon Rekognition Video analyzed. <code>Videometadata</code> is returned in every page of paginated responses from a Amazon Rekognition Video operation.</p>
    #[serde(rename = "VideoMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub video_metadata: Option<VideoMetadata>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetContentModerationRequest {
    /// <p>The identifier for the content moderation job. Use <code>JobId</code> to identify the job in a subsequent call to <code>GetContentModeration</code>.</p>
    #[serde(rename = "JobId")]
    pub job_id: String,
    /// <p>Maximum number of results to return per paginated call. The largest value you can specify is 1000. If you specify a value greater than 1000, a maximum of 1000 results is returned. The default value is 1000.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the previous response was incomplete (because there is more data to retrieve), Amazon Rekognition returns a pagination token in the response. You can use this pagination token to retrieve the next set of content moderation labels.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>Sort to use for elements in the <code>ModerationLabelDetections</code> array. Use <code>TIMESTAMP</code> to sort array elements by the time labels are detected. Use <code>NAME</code> to alphabetically group elements for a label together. Within each label group, the array element are sorted by detection confidence. The default sort is by <code>TIMESTAMP</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetContentModerationResponse {
    /// <p>The current status of the content moderation job.</p>
    #[serde(rename = "JobStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_status: Option<String>,
    /// <p>The detected moderation labels and the time(s) they were detected.</p>
    #[serde(rename = "ModerationLabels")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub moderation_labels: Option<Vec<ContentModerationDetection>>,
    /// <p>Version number of the moderation detection model that was used to detect unsafe content.</p>
    #[serde(rename = "ModerationModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub moderation_model_version: Option<String>,
    /// <p>If the response is truncated, Amazon Rekognition Video returns this token that you can use in the subsequent request to retrieve the next set of moderation labels. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>If the job fails, <code>StatusMessage</code> provides a descriptive error message.</p>
    #[serde(rename = "StatusMessage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_message: Option<String>,
    /// <p>Information about a video that Amazon Rekognition analyzed. <code>Videometadata</code> is returned in every page of paginated responses from <code>GetContentModeration</code>. </p>
    #[serde(rename = "VideoMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub video_metadata: Option<VideoMetadata>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetFaceDetectionRequest {
    /// <p>Unique identifier for the face detection job. The <code>JobId</code> is returned from <code>StartFaceDetection</code>.</p>
    #[serde(rename = "JobId")]
    pub job_id: String,
    /// <p>Maximum number of results to return per paginated call. The largest value you can specify is 1000. If you specify a value greater than 1000, a maximum of 1000 results is returned. The default value is 1000.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the previous response was incomplete (because there are more faces to retrieve), Amazon Rekognition Video returns a pagination token in the response. You can use this pagination token to retrieve the next set of faces.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetFaceDetectionResponse {
    /// <p>An array of faces detected in the video. Each element contains a detected face's details and the time, in milliseconds from the start of the video, the face was detected. </p>
    #[serde(rename = "Faces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub faces: Option<Vec<FaceDetection>>,
    /// <p>The current status of the face detection job.</p>
    #[serde(rename = "JobStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_status: Option<String>,
    /// <p>If the response is truncated, Amazon Rekognition returns this token that you can use in the subsequent request to retrieve the next set of faces. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>If the job fails, <code>StatusMessage</code> provides a descriptive error message.</p>
    #[serde(rename = "StatusMessage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_message: Option<String>,
    /// <p>Information about a video that Amazon Rekognition Video analyzed. <code>Videometadata</code> is returned in every page of paginated responses from a Amazon Rekognition video operation.</p>
    #[serde(rename = "VideoMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub video_metadata: Option<VideoMetadata>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetFaceSearchRequest {
    /// <p>The job identifer for the search request. You get the job identifier from an initial call to <code>StartFaceSearch</code>.</p>
    #[serde(rename = "JobId")]
    pub job_id: String,
    /// <p>Maximum number of results to return per paginated call. The largest value you can specify is 1000. If you specify a value greater than 1000, a maximum of 1000 results is returned. The default value is 1000.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the previous response was incomplete (because there is more search results to retrieve), Amazon Rekognition Video returns a pagination token in the response. You can use this pagination token to retrieve the next set of search results. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>Sort to use for grouping faces in the response. Use <code>TIMESTAMP</code> to group faces by the time that they are recognized. Use <code>INDEX</code> to sort by recognized faces. </p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetFaceSearchResponse {
    /// <p>The current status of the face search job.</p>
    #[serde(rename = "JobStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_status: Option<String>,
    /// <p>If the response is truncated, Amazon Rekognition Video returns this token that you can use in the subsequent request to retrieve the next set of search results. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of persons, <a>PersonMatch</a>, in the video whose face(s) match the face(s) in an Amazon Rekognition collection. It also includes time information for when persons are matched in the video. You specify the input collection in an initial call to <code>StartFaceSearch</code>. Each <code>Persons</code> element includes a time the person was matched, face match details (<code>FaceMatches</code>) for matching faces in the collection, and person information (<code>Person</code>) for the matched person. </p>
    #[serde(rename = "Persons")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub persons: Option<Vec<PersonMatch>>,
    /// <p>If the job fails, <code>StatusMessage</code> provides a descriptive error message.</p>
    #[serde(rename = "StatusMessage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_message: Option<String>,
    /// <p>Information about a video that Amazon Rekognition analyzed. <code>Videometadata</code> is returned in every page of paginated responses from a Amazon Rekognition Video operation. </p>
    #[serde(rename = "VideoMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub video_metadata: Option<VideoMetadata>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetLabelDetectionRequest {
    /// <p>Job identifier for the label detection operation for which you want results returned. You get the job identifer from an initial call to <code>StartlabelDetection</code>.</p>
    #[serde(rename = "JobId")]
    pub job_id: String,
    /// <p>Maximum number of results to return per paginated call. The largest value you can specify is 1000. If you specify a value greater than 1000, a maximum of 1000 results is returned. The default value is 1000.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the previous response was incomplete (because there are more labels to retrieve), Amazon Rekognition Video returns a pagination token in the response. You can use this pagination token to retrieve the next set of labels. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>Sort to use for elements in the <code>Labels</code> array. Use <code>TIMESTAMP</code> to sort array elements by the time labels are detected. Use <code>NAME</code> to alphabetically group elements for a label together. Within each label group, the array element are sorted by detection confidence. The default sort is by <code>TIMESTAMP</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetLabelDetectionResponse {
    /// <p>The current status of the label detection job.</p>
    #[serde(rename = "JobStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_status: Option<String>,
    /// <p>Version number of the label detection model that was used to detect labels.</p>
    #[serde(rename = "LabelModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub label_model_version: Option<String>,
    /// <p>An array of labels detected in the video. Each element contains the detected label and the time, in milliseconds from the start of the video, that the label was detected. </p>
    #[serde(rename = "Labels")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labels: Option<Vec<LabelDetection>>,
    /// <p>If the response is truncated, Amazon Rekognition Video returns this token that you can use in the subsequent request to retrieve the next set of labels.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>If the job fails, <code>StatusMessage</code> provides a descriptive error message.</p>
    #[serde(rename = "StatusMessage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_message: Option<String>,
    /// <p>Information about a video that Amazon Rekognition Video analyzed. <code>Videometadata</code> is returned in every page of paginated responses from a Amazon Rekognition video operation.</p>
    #[serde(rename = "VideoMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub video_metadata: Option<VideoMetadata>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetPersonTrackingRequest {
    /// <p>The identifier for a job that tracks persons in a video. You get the <code>JobId</code> from a call to <code>StartPersonTracking</code>. </p>
    #[serde(rename = "JobId")]
    pub job_id: String,
    /// <p>Maximum number of results to return per paginated call. The largest value you can specify is 1000. If you specify a value greater than 1000, a maximum of 1000 results is returned. The default value is 1000.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the previous response was incomplete (because there are more persons to retrieve), Amazon Rekognition Video returns a pagination token in the response. You can use this pagination token to retrieve the next set of persons. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>Sort to use for elements in the <code>Persons</code> array. Use <code>TIMESTAMP</code> to sort array elements by the time persons are detected. Use <code>INDEX</code> to sort by the tracked persons. If you sort by <code>INDEX</code>, the array elements for each person are sorted by detection confidence. The default sort is by <code>TIMESTAMP</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetPersonTrackingResponse {
    /// <p>The current status of the person tracking job.</p>
    #[serde(rename = "JobStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_status: Option<String>,
    /// <p>If the response is truncated, Amazon Rekognition Video returns this token that you can use in the subsequent request to retrieve the next set of persons. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of the persons detected in the video and the time(s) their path was tracked throughout the video. An array element will exist for each time a person's path is tracked. </p>
    #[serde(rename = "Persons")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub persons: Option<Vec<PersonDetection>>,
    /// <p>If the job fails, <code>StatusMessage</code> provides a descriptive error message.</p>
    #[serde(rename = "StatusMessage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_message: Option<String>,
    /// <p>Information about a video that Amazon Rekognition Video analyzed. <code>Videometadata</code> is returned in every page of paginated responses from a Amazon Rekognition Video operation.</p>
    #[serde(rename = "VideoMetadata")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub video_metadata: Option<VideoMetadata>,
}

/// <p>Provides the input image either as bytes or an S3 object.</p> <p>You pass image bytes to an Amazon Rekognition API operation by using the <code>Bytes</code> property. For example, you would use the <code>Bytes</code> property to pass an image loaded from a local file system. Image bytes passed by using the <code>Bytes</code> property must be base64-encoded. Your code may not need to encode image bytes if you are using an AWS SDK to call Amazon Rekognition API operations. </p> <p>For more information, see Analyzing an Image Loaded from a Local File System in the Amazon Rekognition Developer Guide.</p> <p> You pass images stored in an S3 bucket to an Amazon Rekognition API operation by using the <code>S3Object</code> property. Images stored in an S3 bucket do not need to be base64-encoded.</p> <p>The region for the S3 bucket containing the S3 object must match the region you use for Amazon Rekognition operations.</p> <p>If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes using the Bytes property is not supported. You must first upload the image to an Amazon S3 bucket and then call the operation using the S3Object property.</p> <p>For Amazon Rekognition to process an S3 object, the user must have permission to access the S3 object. For more information, see Resource Based Policies in the Amazon Rekognition Developer Guide. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct Image {
    /// <p>Blob of image bytes up to 5 MBs.</p>
    #[serde(rename = "Bytes")]
    #[serde(
        deserialize_with = "::rusoto_core::serialization::SerdeBlob::deserialize_blob",
        serialize_with = "::rusoto_core::serialization::SerdeBlob::serialize_blob",
        default
    )]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bytes: Option<bytes::Bytes>,
    /// <p>Identifies an S3 object as the image source.</p>
    #[serde(rename = "S3Object")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub s3_object: Option<S3Object>,
}

/// <p>Identifies face image brightness and sharpness. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ImageQuality {
    /// <p>Value representing brightness of the face. The service returns a value between 0 and 100 (inclusive). A higher value indicates a brighter face image.</p>
    #[serde(rename = "Brightness")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub brightness: Option<f32>,
    /// <p>Value representing sharpness of the face. The service returns a value between 0 and 100 (inclusive). A higher value indicates a sharper face image.</p>
    #[serde(rename = "Sharpness")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sharpness: Option<f32>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct IndexFacesRequest {
    /// <p>The ID of an existing collection to which you want to add the faces that are detected in the input images.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
    /// <p>An array of facial attributes that you want to be returned. This can be the default list of attributes or all attributes. If you don't specify a value for <code>Attributes</code> or if you specify <code>["DEFAULT"]</code>, the API returns the following subset of facial attributes: <code>BoundingBox</code>, <code>Confidence</code>, <code>Pose</code>, <code>Quality</code>, and <code>Landmarks</code>. If you provide <code>["ALL"]</code>, all facial attributes are returned, but the operation takes longer to complete.</p> <p>If you provide both, <code>["ALL", "DEFAULT"]</code>, the service uses a logical AND operator to determine which attributes to return (in this case, all attributes). </p>
    #[serde(rename = "DetectionAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub detection_attributes: Option<Vec<String>>,
    /// <p>The ID you want to assign to all the faces detected in the image.</p>
    #[serde(rename = "ExternalImageId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub external_image_id: Option<String>,
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes isn't supported. </p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "Image")]
    pub image: Image,
    /// <p>The maximum number of faces to index. The value of <code>MaxFaces</code> must be greater than or equal to 1. <code>IndexFaces</code> returns no more than 100 detected faces in an image, even if you specify a larger value for <code>MaxFaces</code>.</p> <p>If <code>IndexFaces</code> detects more faces than the value of <code>MaxFaces</code>, the faces with the lowest quality are filtered out first. If there are still more faces than the value of <code>MaxFaces</code>, the faces with the smallest bounding boxes are filtered out (up to the number that's needed to satisfy the value of <code>MaxFaces</code>). Information about the unindexed faces is available in the <code>UnindexedFaces</code> array. </p> <p>The faces that are returned by <code>IndexFaces</code> are sorted by the largest face bounding box size to the smallest size, in descending order.</p> <p> <code>MaxFaces</code> can be used with a collection associated with any version of the face model.</p>
    #[serde(rename = "MaxFaces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_faces: Option<i64>,
    /// <p>A filter that specifies how much filtering is done to identify faces that are detected with low quality. Filtered faces aren't indexed. If you specify <code>AUTO</code>, filtering prioritizes the identification of faces that don’t meet the required quality bar chosen by Amazon Rekognition. The quality bar is based on a variety of common use cases. Low-quality detections can occur for a number of reasons. Some examples are an object that's misidentified as a face, a face that's too blurry, or a face with a pose that's too extreme to use. If you specify <code>NONE</code>, no filtering is performed. The default value is AUTO.</p> <p>To use quality filtering, the collection you are using must be associated with version 3 of the face model.</p>
    #[serde(rename = "QualityFilter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub quality_filter: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct IndexFacesResponse {
    /// <p>The version number of the face detection model that's associated with the input collection (<code>CollectionId</code>).</p>
    #[serde(rename = "FaceModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_model_version: Option<String>,
    /// <p>An array of faces detected and added to the collection. For more information, see Searching Faces in a Collection in the Amazon Rekognition Developer Guide. </p>
    #[serde(rename = "FaceRecords")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_records: Option<Vec<FaceRecord>>,
    /// <p>If your collection is associated with a face detection model that's later than version 3.0, the value of <code>OrientationCorrection</code> is always null and no orientation information is returned.</p> <p>If your collection is associated with a face detection model that's version 3.0 or earlier, the following applies:</p> <ul> <li> <p>If the input image is in .jpeg format, it might contain exchangeable image file format (Exif) metadata that includes the image's orientation. Amazon Rekognition uses this orientation information to perform image correction - the bounding box coordinates are translated to represent object locations after the orientation information in the Exif metadata is used to correct the image orientation. Images in .png format don't contain Exif metadata. The value of <code>OrientationCorrection</code> is null.</p> </li> <li> <p>If the image doesn't contain orientation information in its Exif metadata, Amazon Rekognition returns an estimated orientation (ROTATE_0, ROTATE_90, ROTATE_180, ROTATE_270). Amazon Rekognition doesn’t perform image correction for images. The bounding box coordinates aren't translated and represent the object locations before the image is rotated.</p> </li> </ul> <p>Bounding box information is returned in the <code>FaceRecords</code> array. You can get the version of the face detection model by calling <a>DescribeCollection</a>. </p>
    #[serde(rename = "OrientationCorrection")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub orientation_correction: Option<String>,
    /// <p>An array of faces that were detected in the image but weren't indexed. They weren't indexed because the quality filter identified them as low quality, or the <code>MaxFaces</code> request parameter filtered them out. To use the quality filter, you specify the <code>QualityFilter</code> request parameter.</p>
    #[serde(rename = "UnindexedFaces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub unindexed_faces: Option<Vec<UnindexedFace>>,
}

/// <p>An instance of a label returned by Amazon Rekognition Image (<a>DetectLabels</a>) or by Amazon Rekognition Video (<a>GetLabelDetection</a>).</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Instance {
    /// <p>The position of the label instance on the image.</p>
    #[serde(rename = "BoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bounding_box: Option<BoundingBox>,
    /// <p>The confidence that Amazon Rekognition has in the accuracy of the bounding box.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
}

/// <p>The Kinesis data stream Amazon Rekognition to which the analysis results of a Amazon Rekognition stream processor are streamed. For more information, see CreateStreamProcessor in the Amazon Rekognition Developer Guide.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct KinesisDataStream {
    /// <p>ARN of the output Amazon Kinesis Data Streams stream.</p>
    #[serde(rename = "Arn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub arn: Option<String>,
}

/// <p>Kinesis video stream stream that provides the source streaming video for a Amazon Rekognition Video stream processor. For more information, see CreateStreamProcessor in the Amazon Rekognition Developer Guide.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct KinesisVideoStream {
    /// <p>ARN of the Kinesis video stream stream that streams the source video.</p>
    #[serde(rename = "Arn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub arn: Option<String>,
}

/// <p>Structure containing details about the detected label, including the name, detected instances, parent labels, and level of confidence.</p> <p> </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Label {
    /// <p>Level of confidence.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>If <code>Label</code> represents an object, <code>Instances</code> contains the bounding boxes for each instance of the detected object. Bounding boxes are returned for common object labels such as people, cars, furniture, apparel or pets.</p>
    #[serde(rename = "Instances")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub instances: Option<Vec<Instance>>,
    /// <p>The name (label) of the object or scene.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>The parent labels for a label. The response includes all ancestor labels.</p>
    #[serde(rename = "Parents")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub parents: Option<Vec<Parent>>,
}

/// <p>Information about a label detected in a video analysis request and the time the label was detected in the video. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct LabelDetection {
    /// <p>Details about the detected label.</p>
    #[serde(rename = "Label")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub label: Option<Label>,
    /// <p>Time, in milliseconds from the start of the video, that the label was detected.</p>
    #[serde(rename = "Timestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub timestamp: Option<i64>,
}

/// <p>Indicates the location of the landmark on the face.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Landmark {
    /// <p>Type of landmark.</p>
    #[serde(rename = "Type")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub type_: Option<String>,
    /// <p>The x-coordinate from the top left of the landmark expressed as the ratio of the width of the image. For example, if the image is 700 x 200 and the x-coordinate of the landmark is at 350 pixels, this value is 0.5. </p>
    #[serde(rename = "X")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub x: Option<f32>,
    /// <p>The y-coordinate from the top left of the landmark expressed as the ratio of the height of the image. For example, if the image is 700 x 200 and the y-coordinate of the landmark is at 100 pixels, this value is 0.5.</p>
    #[serde(rename = "Y")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub y: Option<f32>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListCollectionsRequest {
    /// <p>Maximum number of collection IDs to return. </p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>Pagination token from the previous response.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListCollectionsResponse {
    /// <p>An array of collection IDs.</p>
    #[serde(rename = "CollectionIds")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub collection_ids: Option<Vec<String>>,
    /// <p>Version numbers of the face detection models associated with the collections in the array <code>CollectionIds</code>. For example, the value of <code>FaceModelVersions[2]</code> is the version number for the face detection model used by the collection in <code>CollectionId[2]</code>.</p>
    #[serde(rename = "FaceModelVersions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_model_versions: Option<Vec<String>>,
    /// <p>If the result is truncated, the response provides a <code>NextToken</code> that you can use in the subsequent request to fetch the next set of collection IDs.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListFacesRequest {
    /// <p>ID of the collection from which to list the faces.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
    /// <p>Maximum number of faces to return.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the previous response was incomplete (because there is more data to retrieve), Amazon Rekognition returns a pagination token in the response. You can use this pagination token to retrieve the next set of faces.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListFacesResponse {
    /// <p>Version number of the face detection model associated with the input collection (<code>CollectionId</code>).</p>
    #[serde(rename = "FaceModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_model_version: Option<String>,
    /// <p>An array of <code>Face</code> objects. </p>
    #[serde(rename = "Faces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub faces: Option<Vec<Face>>,
    /// <p>If the response is truncated, Amazon Rekognition returns this token that you can use in the subsequent request to retrieve the next set of faces.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListStreamProcessorsRequest {
    /// <p>Maximum number of stream processors you want Amazon Rekognition Video to return in the response. The default is 1000. </p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the previous response was incomplete (because there are more stream processors to retrieve), Amazon Rekognition Video returns a pagination token in the response. You can use this pagination token to retrieve the next set of stream processors. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListStreamProcessorsResponse {
    /// <p>If the response is truncated, Amazon Rekognition Video returns this token that you can use in the subsequent request to retrieve the next set of stream processors. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>List of stream processors that you have created.</p>
    #[serde(rename = "StreamProcessors")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stream_processors: Option<Vec<StreamProcessor>>,
}

/// <p>Provides information about a single type of moderated content found in an image or video. Each type of moderated content has a label within a hierarchical taxonomy. For more information, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ModerationLabel {
    /// <p>Specifies the confidence that Amazon Rekognition has that the label has been correctly identified.</p> <p>If you don't specify the <code>MinConfidence</code> parameter in the call to <code>DetectModerationLabels</code>, the operation returns labels with a confidence value greater than or equal to 50 percent.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>The label name for the type of content detected in the image.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>The name for the parent label. Labels at the top level of the hierarchy have the parent label <code>""</code>.</p>
    #[serde(rename = "ParentName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub parent_name: Option<String>,
}

/// <p>Indicates whether or not the mouth on the face is open, and the confidence level in the determination.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct MouthOpen {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Boolean value that indicates whether the mouth on the face is open or not.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<bool>,
}

/// <p>Indicates whether or not the face has a mustache, and the confidence level in the determination.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Mustache {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Boolean value that indicates whether the face has mustache or not.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<bool>,
}

/// <p>The Amazon Simple Notification Service topic to which Amazon Rekognition publishes the completion status of a video analysis operation. For more information, see <a>api-video</a>.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct NotificationChannel {
    /// <p>The ARN of an IAM role that gives Amazon Rekognition publishing permissions to the Amazon SNS topic. </p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>The Amazon SNS topic to which Amazon Rekognition to posts the completion status.</p>
    #[serde(rename = "SNSTopicArn")]
    pub sns_topic_arn: String,
}

/// <p>A parent label for a label. A label can have 0, 1, or more parents. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Parent {
    /// <p>The name of the parent label.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
}

/// <p>Details about a person detected in a video analysis request.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct PersonDetail {
    /// <p>Bounding box around the detected person.</p>
    #[serde(rename = "BoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bounding_box: Option<BoundingBox>,
    /// <p>Face details for the detected person.</p>
    #[serde(rename = "Face")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face: Option<FaceDetail>,
    /// <p>Identifier for the person detected person within a video. Use to keep track of the person throughout the video. The identifier is not stored by Amazon Rekognition.</p>
    #[serde(rename = "Index")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub index: Option<i64>,
}

/// <p>Details and path tracking information for a single time a person's path is tracked in a video. Amazon Rekognition operations that track people's paths return an array of <code>PersonDetection</code> objects with elements for each time a person's path is tracked in a video. </p> <p>For more information, see GetPersonTracking in the Amazon Rekognition Developer Guide. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct PersonDetection {
    /// <p>Details about a person whose path was tracked in a video.</p>
    #[serde(rename = "Person")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub person: Option<PersonDetail>,
    /// <p>The time, in milliseconds from the start of the video, that the person's path was tracked.</p>
    #[serde(rename = "Timestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub timestamp: Option<i64>,
}

/// <p>Information about a person whose face matches a face(s) in an Amazon Rekognition collection. Includes information about the faces in the Amazon Rekognition collection (<a>FaceMatch</a>), information about the person (<a>PersonDetail</a>), and the time stamp for when the person was detected in a video. An array of <code>PersonMatch</code> objects is returned by <a>GetFaceSearch</a>. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct PersonMatch {
    /// <p>Information about the faces in the input collection that match the face of a person in the video.</p>
    #[serde(rename = "FaceMatches")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_matches: Option<Vec<FaceMatch>>,
    /// <p>Information about the matched person.</p>
    #[serde(rename = "Person")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub person: Option<PersonDetail>,
    /// <p>The time, in milliseconds from the beginning of the video, that the person was matched in the video.</p>
    #[serde(rename = "Timestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub timestamp: Option<i64>,
}

/// <p>The X and Y coordinates of a point on an image. The X and Y values returned are ratios of the overall image size. For example, if the input image is 700x200 and the operation returns X=0.5 and Y=0.25, then the point is at the (350,50) pixel coordinate on the image.</p> <p>An array of <code>Point</code> objects, <code>Polygon</code>, is returned by <a>DetectText</a>. <code>Polygon</code> represents a fine-grained polygon around detected text. For more information, see Geometry in the Amazon Rekognition Developer Guide. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Point {
    /// <p>The value of the X coordinate for a point on a <code>Polygon</code>.</p>
    #[serde(rename = "X")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub x: Option<f32>,
    /// <p>The value of the Y coordinate for a point on a <code>Polygon</code>.</p>
    #[serde(rename = "Y")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub y: Option<f32>,
}

/// <p>Indicates the pose of the face as determined by its pitch, roll, and yaw.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Pose {
    /// <p>Value representing the face rotation on the pitch axis.</p>
    #[serde(rename = "Pitch")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub pitch: Option<f32>,
    /// <p>Value representing the face rotation on the roll axis.</p>
    #[serde(rename = "Roll")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub roll: Option<f32>,
    /// <p>Value representing the face rotation on the yaw axis.</p>
    #[serde(rename = "Yaw")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub yaw: Option<f32>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct RecognizeCelebritiesRequest {
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported. </p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "Image")]
    pub image: Image,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct RecognizeCelebritiesResponse {
    /// <p>Details about each celebrity found in the image. Amazon Rekognition can detect a maximum of 15 celebrities in an image.</p>
    #[serde(rename = "CelebrityFaces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub celebrity_faces: Option<Vec<Celebrity>>,
    /// <p><p>The orientation of the input image (counterclockwise direction). If your application displays the image, you can use this value to correct the orientation. The bounding box coordinates returned in <code>CelebrityFaces</code> and <code>UnrecognizedFaces</code> represent face locations before the image orientation is corrected. </p> <note> <p>If the input image is in .jpeg format, it might contain exchangeable image (Exif) metadata that includes the image&#39;s orientation. If so, and the Exif metadata for the input image populates the orientation field, the value of <code>OrientationCorrection</code> is null. The <code>CelebrityFaces</code> and <code>UnrecognizedFaces</code> bounding box coordinates represent face locations after Exif metadata is used to correct the image orientation. Images in .png format don&#39;t contain Exif metadata. </p> </note></p>
    #[serde(rename = "OrientationCorrection")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub orientation_correction: Option<String>,
    /// <p>Details about each unrecognized face in the image.</p>
    #[serde(rename = "UnrecognizedFaces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub unrecognized_faces: Option<Vec<ComparedFace>>,
}

/// <p>Provides the S3 bucket name and object name.</p> <p>The region for the S3 bucket containing the S3 object must match the region you use for Amazon Rekognition operations.</p> <p>For Amazon Rekognition to process an S3 object, the user must have permission to access the S3 object. For more information, see Resource-Based Policies in the Amazon Rekognition Developer Guide. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct S3Object {
    /// <p>Name of the S3 bucket.</p>
    #[serde(rename = "Bucket")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub bucket: Option<String>,
    /// <p>S3 object key name.</p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>If the bucket is versioning enabled, you can specify the object version. </p>
    #[serde(rename = "Version")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub version: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct SearchFacesByImageRequest {
    /// <p>ID of the collection to search.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
    /// <p>(Optional) Specifies the minimum confidence in the face match to return. For example, don't return any matches where confidence in matches is less than 70%.</p>
    #[serde(rename = "FaceMatchThreshold")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_match_threshold: Option<f32>,
    /// <p>The input image as base64-encoded bytes or an S3 object. If you use the AWS CLI to call Amazon Rekognition operations, passing base64-encoded image bytes is not supported. </p> <p>If you are using an AWS SDK to call Amazon Rekognition, you might not need to base64-encode image bytes passed using the <code>Bytes</code> field. For more information, see Images in the Amazon Rekognition developer guide.</p>
    #[serde(rename = "Image")]
    pub image: Image,
    /// <p>Maximum number of faces to return. The operation returns the maximum number of faces with the highest confidence in the match.</p>
    #[serde(rename = "MaxFaces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_faces: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct SearchFacesByImageResponse {
    /// <p>An array of faces that match the input face, along with the confidence in the match.</p>
    #[serde(rename = "FaceMatches")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_matches: Option<Vec<FaceMatch>>,
    /// <p>Version number of the face detection model associated with the input collection (<code>CollectionId</code>).</p>
    #[serde(rename = "FaceModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_model_version: Option<String>,
    /// <p>The bounding box around the face in the input image that Amazon Rekognition used for the search.</p>
    #[serde(rename = "SearchedFaceBoundingBox")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub searched_face_bounding_box: Option<BoundingBox>,
    /// <p>The level of confidence that the <code>searchedFaceBoundingBox</code>, contains a face.</p>
    #[serde(rename = "SearchedFaceConfidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub searched_face_confidence: Option<f32>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct SearchFacesRequest {
    /// <p>ID of the collection the face belongs to.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
    /// <p>ID of a face to find matches for in the collection.</p>
    #[serde(rename = "FaceId")]
    pub face_id: String,
    /// <p>Optional value specifying the minimum confidence in the face match to return. For example, don't return any matches where confidence in matches is less than 70%.</p>
    #[serde(rename = "FaceMatchThreshold")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_match_threshold: Option<f32>,
    /// <p>Maximum number of faces to return. The operation returns the maximum number of faces with the highest confidence in the match.</p>
    #[serde(rename = "MaxFaces")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_faces: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct SearchFacesResponse {
    /// <p>An array of faces that matched the input face, along with the confidence in the match.</p>
    #[serde(rename = "FaceMatches")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_matches: Option<Vec<FaceMatch>>,
    /// <p>Version number of the face detection model associated with the input collection (<code>CollectionId</code>).</p>
    #[serde(rename = "FaceModelVersion")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_model_version: Option<String>,
    /// <p>ID of the face that was searched for matches in a collection.</p>
    #[serde(rename = "SearchedFaceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub searched_face_id: Option<String>,
}

/// <p>Indicates whether or not the face is smiling, and the confidence level in the determination.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Smile {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Boolean value that indicates whether the face is smiling or not.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<bool>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StartCelebrityRecognitionRequest {
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartCelebrityRecognition</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    #[serde(rename = "ClientRequestToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub client_request_token: Option<String>,
    /// <p>Unique identifier you specify to identify the job in the completion status published to the Amazon Simple Notification Service topic. </p>
    #[serde(rename = "JobTag")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_tag: Option<String>,
    /// <p>The Amazon SNS topic ARN that you want Amazon Rekognition Video to publish the completion status of the celebrity recognition analysis to.</p>
    #[serde(rename = "NotificationChannel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_channel: Option<NotificationChannel>,
    /// <p>The video in which you want to recognize celebrities. The video must be stored in an Amazon S3 bucket.</p>
    #[serde(rename = "Video")]
    pub video: Video,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StartCelebrityRecognitionResponse {
    /// <p>The identifier for the celebrity recognition analysis job. Use <code>JobId</code> to identify the job in a subsequent call to <code>GetCelebrityRecognition</code>.</p>
    #[serde(rename = "JobId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StartContentModerationRequest {
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartContentModeration</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    #[serde(rename = "ClientRequestToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub client_request_token: Option<String>,
    /// <p>Unique identifier you specify to identify the job in the completion status published to the Amazon Simple Notification Service topic. </p>
    #[serde(rename = "JobTag")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_tag: Option<String>,
    /// <p>Specifies the minimum confidence that Amazon Rekognition must have in order to return a moderated content label. Confidence represents how certain Amazon Rekognition is that the moderated content is correctly identified. 0 is the lowest confidence. 100 is the highest confidence. Amazon Rekognition doesn't return any moderated content labels with a confidence level lower than this specified value. If you don't specify <code>MinConfidence</code>, <code>GetContentModeration</code> returns labels with confidence values greater than or equal to 50 percent.</p>
    #[serde(rename = "MinConfidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub min_confidence: Option<f32>,
    /// <p>The Amazon SNS topic ARN that you want Amazon Rekognition Video to publish the completion status of the content moderation analysis to.</p>
    #[serde(rename = "NotificationChannel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_channel: Option<NotificationChannel>,
    /// <p>The video in which you want to moderate content. The video must be stored in an Amazon S3 bucket.</p>
    #[serde(rename = "Video")]
    pub video: Video,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StartContentModerationResponse {
    /// <p>The identifier for the content moderation analysis job. Use <code>JobId</code> to identify the job in a subsequent call to <code>GetContentModeration</code>.</p>
    #[serde(rename = "JobId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StartFaceDetectionRequest {
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartFaceDetection</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    #[serde(rename = "ClientRequestToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub client_request_token: Option<String>,
    /// <p>The face attributes you want returned.</p> <p> <code>DEFAULT</code> - The following subset of facial attributes are returned: BoundingBox, Confidence, Pose, Quality and Landmarks. </p> <p> <code>ALL</code> - All facial attributes are returned.</p>
    #[serde(rename = "FaceAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_attributes: Option<String>,
    /// <p>Unique identifier you specify to identify the job in the completion status published to the Amazon Simple Notification Service topic. </p>
    #[serde(rename = "JobTag")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_tag: Option<String>,
    /// <p>The ARN of the Amazon SNS topic to which you want Amazon Rekognition Video to publish the completion status of the face detection operation.</p>
    #[serde(rename = "NotificationChannel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_channel: Option<NotificationChannel>,
    /// <p>The video in which you want to detect faces. The video must be stored in an Amazon S3 bucket.</p>
    #[serde(rename = "Video")]
    pub video: Video,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StartFaceDetectionResponse {
    /// <p>The identifier for the face detection job. Use <code>JobId</code> to identify the job in a subsequent call to <code>GetFaceDetection</code>.</p>
    #[serde(rename = "JobId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StartFaceSearchRequest {
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartFaceSearch</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    #[serde(rename = "ClientRequestToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub client_request_token: Option<String>,
    /// <p>ID of the collection that contains the faces you want to search for.</p>
    #[serde(rename = "CollectionId")]
    pub collection_id: String,
    /// <p>The minimum confidence in the person match to return. For example, don't return any matches where confidence in matches is less than 70%. </p>
    #[serde(rename = "FaceMatchThreshold")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_match_threshold: Option<f32>,
    /// <p>Unique identifier you specify to identify the job in the completion status published to the Amazon Simple Notification Service topic. </p>
    #[serde(rename = "JobTag")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_tag: Option<String>,
    /// <p>The ARN of the Amazon SNS topic to which you want Amazon Rekognition Video to publish the completion status of the search. </p>
    #[serde(rename = "NotificationChannel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_channel: Option<NotificationChannel>,
    /// <p>The video you want to search. The video must be stored in an Amazon S3 bucket. </p>
    #[serde(rename = "Video")]
    pub video: Video,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StartFaceSearchResponse {
    /// <p>The identifier for the search job. Use <code>JobId</code> to identify the job in a subsequent call to <code>GetFaceSearch</code>. </p>
    #[serde(rename = "JobId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StartLabelDetectionRequest {
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartLabelDetection</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    #[serde(rename = "ClientRequestToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub client_request_token: Option<String>,
    /// <p>Unique identifier you specify to identify the job in the completion status published to the Amazon Simple Notification Service topic. </p>
    #[serde(rename = "JobTag")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_tag: Option<String>,
    /// <p>Specifies the minimum confidence that Amazon Rekognition Video must have in order to return a detected label. Confidence represents how certain Amazon Rekognition is that a label is correctly identified.0 is the lowest confidence. 100 is the highest confidence. Amazon Rekognition Video doesn't return any labels with a confidence level lower than this specified value.</p> <p>If you don't specify <code>MinConfidence</code>, the operation returns labels with confidence values greater than or equal to 50 percent.</p>
    #[serde(rename = "MinConfidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub min_confidence: Option<f32>,
    /// <p>The Amazon SNS topic ARN you want Amazon Rekognition Video to publish the completion status of the label detection operation to. </p>
    #[serde(rename = "NotificationChannel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_channel: Option<NotificationChannel>,
    /// <p>The video in which you want to detect labels. The video must be stored in an Amazon S3 bucket.</p>
    #[serde(rename = "Video")]
    pub video: Video,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StartLabelDetectionResponse {
    /// <p>The identifier for the label detection job. Use <code>JobId</code> to identify the job in a subsequent call to <code>GetLabelDetection</code>. </p>
    #[serde(rename = "JobId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StartPersonTrackingRequest {
    /// <p>Idempotent token used to identify the start request. If you use the same token with multiple <code>StartPersonTracking</code> requests, the same <code>JobId</code> is returned. Use <code>ClientRequestToken</code> to prevent the same job from being accidently started more than once. </p>
    #[serde(rename = "ClientRequestToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub client_request_token: Option<String>,
    /// <p>Unique identifier you specify to identify the job in the completion status published to the Amazon Simple Notification Service topic. </p>
    #[serde(rename = "JobTag")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_tag: Option<String>,
    /// <p>The Amazon SNS topic ARN you want Amazon Rekognition Video to publish the completion status of the people detection operation to.</p>
    #[serde(rename = "NotificationChannel")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_channel: Option<NotificationChannel>,
    /// <p>The video in which you want to detect people. The video must be stored in an Amazon S3 bucket.</p>
    #[serde(rename = "Video")]
    pub video: Video,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StartPersonTrackingResponse {
    /// <p>The identifier for the person detection job. Use <code>JobId</code> to identify the job in a subsequent call to <code>GetPersonTracking</code>.</p>
    #[serde(rename = "JobId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_id: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StartStreamProcessorRequest {
    /// <p>The name of the stream processor to start processing.</p>
    #[serde(rename = "Name")]
    pub name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StartStreamProcessorResponse {}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StopStreamProcessorRequest {
    /// <p>The name of a stream processor created by <a>CreateStreamProcessor</a>.</p>
    #[serde(rename = "Name")]
    pub name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StopStreamProcessorResponse {}

/// <p>An object that recognizes faces in a streaming video. An Amazon Rekognition stream processor is created by a call to <a>CreateStreamProcessor</a>. The request parameters for <code>CreateStreamProcessor</code> describe the Kinesis video stream source for the streaming video, face recognition parameters, and where to stream the analysis resullts. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct StreamProcessor {
    /// <p>Name of the Amazon Rekognition stream processor. </p>
    #[serde(rename = "Name")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name: Option<String>,
    /// <p>Current status of the Amazon Rekognition stream processor.</p>
    #[serde(rename = "Status")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status: Option<String>,
}

/// <p>Information about the source streaming video. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct StreamProcessorInput {
    /// <p>The Kinesis video stream input stream for the source streaming video.</p>
    #[serde(rename = "KinesisVideoStream")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kinesis_video_stream: Option<KinesisVideoStream>,
}

/// <p>Information about the Amazon Kinesis Data Streams stream to which a Amazon Rekognition Video stream processor streams the results of a video analysis. For more information, see CreateStreamProcessor in the Amazon Rekognition Developer Guide.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct StreamProcessorOutput {
    /// <p>The Amazon Kinesis Data Streams stream to which the Amazon Rekognition stream processor streams the analysis results.</p>
    #[serde(rename = "KinesisDataStream")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kinesis_data_stream: Option<KinesisDataStream>,
}

/// <p>Input parameters used to recognize faces in a streaming video analyzed by a Amazon Rekognition stream processor.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct StreamProcessorSettings {
    /// <p>Face search settings to use on a streaming video. </p>
    #[serde(rename = "FaceSearch")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_search: Option<FaceSearchSettings>,
}

/// <p>Indicates whether or not the face is wearing sunglasses, and the confidence level in the determination.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Sunglasses {
    /// <p>Level of confidence in the determination.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>Boolean value that indicates whether the face is wearing sunglasses or not.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<bool>,
}

/// <p>Information about a word or line of text detected by <a>DetectText</a>.</p> <p>The <code>DetectedText</code> field contains the text that Amazon Rekognition detected in the image. </p> <p>Every word and line has an identifier (<code>Id</code>). Each word belongs to a line and has a parent identifier (<code>ParentId</code>) that identifies the line of text in which the word appears. The word <code>Id</code> is also an index for the word within a line of words. </p> <p>For more information, see Detecting Text in the Amazon Rekognition Developer Guide.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct TextDetection {
    /// <p>The confidence that Amazon Rekognition has in the accuracy of the detected text and the accuracy of the geometry points around the detected text.</p>
    #[serde(rename = "Confidence")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub confidence: Option<f32>,
    /// <p>The word or line of text recognized by Amazon Rekognition. </p>
    #[serde(rename = "DetectedText")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub detected_text: Option<String>,
    /// <p>The location of the detected text on the image. Includes an axis aligned coarse bounding box surrounding the text and a finer grain polygon for more accurate spatial information.</p>
    #[serde(rename = "Geometry")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub geometry: Option<Geometry>,
    /// <p>The identifier for the detected text. The identifier is only unique for a single call to <code>DetectText</code>. </p>
    #[serde(rename = "Id")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub id: Option<i64>,
    /// <p>The Parent identifier for the detected text identified by the value of <code>ID</code>. If the type of detected text is <code>LINE</code>, the value of <code>ParentId</code> is <code>Null</code>. </p>
    #[serde(rename = "ParentId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub parent_id: Option<i64>,
    /// <p>The type of text that was detected.</p>
    #[serde(rename = "Type")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub type_: Option<String>,
}

/// <p>A face that <a>IndexFaces</a> detected, but didn't index. Use the <code>Reasons</code> response attribute to determine why a face wasn't indexed.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UnindexedFace {
    /// <p>The structure that contains attributes of a face that <code>IndexFaces</code>detected, but didn't index. </p>
    #[serde(rename = "FaceDetail")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub face_detail: Option<FaceDetail>,
    /// <p><p>An array of reasons that specify why a face wasn&#39;t indexed. </p> <ul> <li> <p>EXTREME<em>POSE - The face is at a pose that can&#39;t be detected. For example, the head is turned too far away from the camera.</p> </li> <li> <p>EXCEEDS</em>MAX<em>FACES - The number of faces detected is already higher than that specified by the <code>MaxFaces</code> input parameter for <code>IndexFaces</code>.</p> </li> <li> <p>LOW</em>BRIGHTNESS - The image is too dark.</p> </li> <li> <p>LOW<em>SHARPNESS - The image is too blurry.</p> </li> <li> <p>LOW</em>CONFIDENCE - The face was detected with a low confidence.</p> </li> <li> <p>SMALL<em>BOUNDING</em>BOX - The bounding box around the face is too small.</p> </li> </ul></p>
    #[serde(rename = "Reasons")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub reasons: Option<Vec<String>>,
}

/// <p>Video file stored in an Amazon S3 bucket. Amazon Rekognition video start operations such as <a>StartLabelDetection</a> use <code>Video</code> to specify a video for analysis. The supported file formats are .mp4, .mov and .avi.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct Video {
    /// <p>The Amazon S3 bucket name and file name for the video.</p>
    #[serde(rename = "S3Object")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub s3_object: Option<S3Object>,
}

/// <p>Information about a video that Amazon Rekognition analyzed. <code>Videometadata</code> is returned in every page of paginated responses from a Amazon Rekognition video operation.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct VideoMetadata {
    /// <p>Type of compression used in the analyzed video. </p>
    #[serde(rename = "Codec")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub codec: Option<String>,
    /// <p>Length of the video in milliseconds.</p>
    #[serde(rename = "DurationMillis")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub duration_millis: Option<i64>,
    /// <p>Format of the analyzed video. Possible values are MP4, MOV and AVI. </p>
    #[serde(rename = "Format")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub format: Option<String>,
    /// <p>Vertical pixel dimension of the video.</p>
    #[serde(rename = "FrameHeight")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub frame_height: Option<i64>,
    /// <p>Number of frames per second in the video.</p>
    #[serde(rename = "FrameRate")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub frame_rate: Option<f32>,
    /// <p>Horizontal pixel dimension of the video.</p>
    #[serde(rename = "FrameWidth")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub frame_width: Option<i64>,
}

/// Errors returned by CompareFaces
#[derive(Debug, PartialEq)]
pub enum CompareFacesError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide. </p>
    ImageTooLarge(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>The provided image format is not supported. </p>
    InvalidImageFormat(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl CompareFacesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CompareFacesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(CompareFacesError::AccessDenied(err.msg))
                }
                "ImageTooLargeException" => {
                    return RusotoError::Service(CompareFacesError::ImageTooLarge(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(CompareFacesError::InternalServerError(err.msg))
                }
                "InvalidImageFormatException" => {
                    return RusotoError::Service(CompareFacesError::InvalidImageFormat(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(CompareFacesError::InvalidParameter(err.msg))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(CompareFacesError::InvalidS3Object(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(CompareFacesError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(CompareFacesError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CompareFacesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CompareFacesError {
    fn description(&self) -> &str {
        match *self {
            CompareFacesError::AccessDenied(ref cause) => cause,
            CompareFacesError::ImageTooLarge(ref cause) => cause,
            CompareFacesError::InternalServerError(ref cause) => cause,
            CompareFacesError::InvalidImageFormat(ref cause) => cause,
            CompareFacesError::InvalidParameter(ref cause) => cause,
            CompareFacesError::InvalidS3Object(ref cause) => cause,
            CompareFacesError::ProvisionedThroughputExceeded(ref cause) => cause,
            CompareFacesError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateCollection
#[derive(Debug, PartialEq)]
pub enum CreateCollectionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>A collection with the specified ID already exists.</p>
    ResourceAlreadyExists(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl CreateCollectionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateCollectionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(CreateCollectionError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(CreateCollectionError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(CreateCollectionError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        CreateCollectionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceAlreadyExistsException" => {
                    return RusotoError::Service(CreateCollectionError::ResourceAlreadyExists(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(CreateCollectionError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateCollectionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateCollectionError {
    fn description(&self) -> &str {
        match *self {
            CreateCollectionError::AccessDenied(ref cause) => cause,
            CreateCollectionError::InternalServerError(ref cause) => cause,
            CreateCollectionError::InvalidParameter(ref cause) => cause,
            CreateCollectionError::ProvisionedThroughputExceeded(ref cause) => cause,
            CreateCollectionError::ResourceAlreadyExists(ref cause) => cause,
            CreateCollectionError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateStreamProcessor
#[derive(Debug, PartialEq)]
pub enum CreateStreamProcessorError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>An Amazon Rekognition service limit was exceeded. For example, if you start too many Amazon Rekognition Video jobs concurrently, calls to start operations (<code>StartLabelDetection</code>, for example) will raise a <code>LimitExceededException</code> exception (HTTP status code: 400) until the number of concurrently running jobs is below the Amazon Rekognition service limit. </p>
    LimitExceeded(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p><p/></p>
    ResourceInUse(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl CreateStreamProcessorError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateStreamProcessorError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(CreateStreamProcessorError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(CreateStreamProcessorError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(CreateStreamProcessorError::InvalidParameter(
                        err.msg,
                    ))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(CreateStreamProcessorError::LimitExceeded(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        CreateStreamProcessorError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceInUseException" => {
                    return RusotoError::Service(CreateStreamProcessorError::ResourceInUse(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(CreateStreamProcessorError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateStreamProcessorError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateStreamProcessorError {
    fn description(&self) -> &str {
        match *self {
            CreateStreamProcessorError::AccessDenied(ref cause) => cause,
            CreateStreamProcessorError::InternalServerError(ref cause) => cause,
            CreateStreamProcessorError::InvalidParameter(ref cause) => cause,
            CreateStreamProcessorError::LimitExceeded(ref cause) => cause,
            CreateStreamProcessorError::ProvisionedThroughputExceeded(ref cause) => cause,
            CreateStreamProcessorError::ResourceInUse(ref cause) => cause,
            CreateStreamProcessorError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteCollection
#[derive(Debug, PartialEq)]
pub enum DeleteCollectionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DeleteCollectionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteCollectionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DeleteCollectionError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DeleteCollectionError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DeleteCollectionError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        DeleteCollectionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteCollectionError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DeleteCollectionError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteCollectionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteCollectionError {
    fn description(&self) -> &str {
        match *self {
            DeleteCollectionError::AccessDenied(ref cause) => cause,
            DeleteCollectionError::InternalServerError(ref cause) => cause,
            DeleteCollectionError::InvalidParameter(ref cause) => cause,
            DeleteCollectionError::ProvisionedThroughputExceeded(ref cause) => cause,
            DeleteCollectionError::ResourceNotFound(ref cause) => cause,
            DeleteCollectionError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteFaces
#[derive(Debug, PartialEq)]
pub enum DeleteFacesError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DeleteFacesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteFacesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DeleteFacesError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DeleteFacesError::InternalServerError(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DeleteFacesError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(DeleteFacesError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteFacesError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DeleteFacesError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteFacesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteFacesError {
    fn description(&self) -> &str {
        match *self {
            DeleteFacesError::AccessDenied(ref cause) => cause,
            DeleteFacesError::InternalServerError(ref cause) => cause,
            DeleteFacesError::InvalidParameter(ref cause) => cause,
            DeleteFacesError::ProvisionedThroughputExceeded(ref cause) => cause,
            DeleteFacesError::ResourceNotFound(ref cause) => cause,
            DeleteFacesError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteStreamProcessor
#[derive(Debug, PartialEq)]
pub enum DeleteStreamProcessorError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p><p/></p>
    ResourceInUse(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DeleteStreamProcessorError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteStreamProcessorError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DeleteStreamProcessorError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DeleteStreamProcessorError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DeleteStreamProcessorError::InvalidParameter(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        DeleteStreamProcessorError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceInUseException" => {
                    return RusotoError::Service(DeleteStreamProcessorError::ResourceInUse(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DeleteStreamProcessorError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DeleteStreamProcessorError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteStreamProcessorError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteStreamProcessorError {
    fn description(&self) -> &str {
        match *self {
            DeleteStreamProcessorError::AccessDenied(ref cause) => cause,
            DeleteStreamProcessorError::InternalServerError(ref cause) => cause,
            DeleteStreamProcessorError::InvalidParameter(ref cause) => cause,
            DeleteStreamProcessorError::ProvisionedThroughputExceeded(ref cause) => cause,
            DeleteStreamProcessorError::ResourceInUse(ref cause) => cause,
            DeleteStreamProcessorError::ResourceNotFound(ref cause) => cause,
            DeleteStreamProcessorError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeCollection
#[derive(Debug, PartialEq)]
pub enum DescribeCollectionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DescribeCollectionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeCollectionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DescribeCollectionError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DescribeCollectionError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DescribeCollectionError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        DescribeCollectionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DescribeCollectionError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DescribeCollectionError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeCollectionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeCollectionError {
    fn description(&self) -> &str {
        match *self {
            DescribeCollectionError::AccessDenied(ref cause) => cause,
            DescribeCollectionError::InternalServerError(ref cause) => cause,
            DescribeCollectionError::InvalidParameter(ref cause) => cause,
            DescribeCollectionError::ProvisionedThroughputExceeded(ref cause) => cause,
            DescribeCollectionError::ResourceNotFound(ref cause) => cause,
            DescribeCollectionError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeStreamProcessor
#[derive(Debug, PartialEq)]
pub enum DescribeStreamProcessorError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DescribeStreamProcessorError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeStreamProcessorError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DescribeStreamProcessorError::AccessDenied(
                        err.msg,
                    ))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DescribeStreamProcessorError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DescribeStreamProcessorError::InvalidParameter(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        DescribeStreamProcessorError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(DescribeStreamProcessorError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DescribeStreamProcessorError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeStreamProcessorError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeStreamProcessorError {
    fn description(&self) -> &str {
        match *self {
            DescribeStreamProcessorError::AccessDenied(ref cause) => cause,
            DescribeStreamProcessorError::InternalServerError(ref cause) => cause,
            DescribeStreamProcessorError::InvalidParameter(ref cause) => cause,
            DescribeStreamProcessorError::ProvisionedThroughputExceeded(ref cause) => cause,
            DescribeStreamProcessorError::ResourceNotFound(ref cause) => cause,
            DescribeStreamProcessorError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DetectFaces
#[derive(Debug, PartialEq)]
pub enum DetectFacesError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide. </p>
    ImageTooLarge(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>The provided image format is not supported. </p>
    InvalidImageFormat(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DetectFacesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DetectFacesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DetectFacesError::AccessDenied(err.msg))
                }
                "ImageTooLargeException" => {
                    return RusotoError::Service(DetectFacesError::ImageTooLarge(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DetectFacesError::InternalServerError(err.msg))
                }
                "InvalidImageFormatException" => {
                    return RusotoError::Service(DetectFacesError::InvalidImageFormat(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DetectFacesError::InvalidParameter(err.msg))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(DetectFacesError::InvalidS3Object(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(DetectFacesError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DetectFacesError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DetectFacesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DetectFacesError {
    fn description(&self) -> &str {
        match *self {
            DetectFacesError::AccessDenied(ref cause) => cause,
            DetectFacesError::ImageTooLarge(ref cause) => cause,
            DetectFacesError::InternalServerError(ref cause) => cause,
            DetectFacesError::InvalidImageFormat(ref cause) => cause,
            DetectFacesError::InvalidParameter(ref cause) => cause,
            DetectFacesError::InvalidS3Object(ref cause) => cause,
            DetectFacesError::ProvisionedThroughputExceeded(ref cause) => cause,
            DetectFacesError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DetectLabels
#[derive(Debug, PartialEq)]
pub enum DetectLabelsError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide. </p>
    ImageTooLarge(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>The provided image format is not supported. </p>
    InvalidImageFormat(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DetectLabelsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DetectLabelsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DetectLabelsError::AccessDenied(err.msg))
                }
                "ImageTooLargeException" => {
                    return RusotoError::Service(DetectLabelsError::ImageTooLarge(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DetectLabelsError::InternalServerError(err.msg))
                }
                "InvalidImageFormatException" => {
                    return RusotoError::Service(DetectLabelsError::InvalidImageFormat(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DetectLabelsError::InvalidParameter(err.msg))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(DetectLabelsError::InvalidS3Object(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(DetectLabelsError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DetectLabelsError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DetectLabelsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DetectLabelsError {
    fn description(&self) -> &str {
        match *self {
            DetectLabelsError::AccessDenied(ref cause) => cause,
            DetectLabelsError::ImageTooLarge(ref cause) => cause,
            DetectLabelsError::InternalServerError(ref cause) => cause,
            DetectLabelsError::InvalidImageFormat(ref cause) => cause,
            DetectLabelsError::InvalidParameter(ref cause) => cause,
            DetectLabelsError::InvalidS3Object(ref cause) => cause,
            DetectLabelsError::ProvisionedThroughputExceeded(ref cause) => cause,
            DetectLabelsError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DetectModerationLabels
#[derive(Debug, PartialEq)]
pub enum DetectModerationLabelsError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide. </p>
    ImageTooLarge(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>The provided image format is not supported. </p>
    InvalidImageFormat(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DetectModerationLabelsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DetectModerationLabelsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DetectModerationLabelsError::AccessDenied(err.msg))
                }
                "ImageTooLargeException" => {
                    return RusotoError::Service(DetectModerationLabelsError::ImageTooLarge(
                        err.msg,
                    ))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DetectModerationLabelsError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidImageFormatException" => {
                    return RusotoError::Service(DetectModerationLabelsError::InvalidImageFormat(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DetectModerationLabelsError::InvalidParameter(
                        err.msg,
                    ))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(DetectModerationLabelsError::InvalidS3Object(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        DetectModerationLabelsError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DetectModerationLabelsError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DetectModerationLabelsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DetectModerationLabelsError {
    fn description(&self) -> &str {
        match *self {
            DetectModerationLabelsError::AccessDenied(ref cause) => cause,
            DetectModerationLabelsError::ImageTooLarge(ref cause) => cause,
            DetectModerationLabelsError::InternalServerError(ref cause) => cause,
            DetectModerationLabelsError::InvalidImageFormat(ref cause) => cause,
            DetectModerationLabelsError::InvalidParameter(ref cause) => cause,
            DetectModerationLabelsError::InvalidS3Object(ref cause) => cause,
            DetectModerationLabelsError::ProvisionedThroughputExceeded(ref cause) => cause,
            DetectModerationLabelsError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by DetectText
#[derive(Debug, PartialEq)]
pub enum DetectTextError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide. </p>
    ImageTooLarge(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>The provided image format is not supported. </p>
    InvalidImageFormat(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl DetectTextError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DetectTextError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(DetectTextError::AccessDenied(err.msg))
                }
                "ImageTooLargeException" => {
                    return RusotoError::Service(DetectTextError::ImageTooLarge(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(DetectTextError::InternalServerError(err.msg))
                }
                "InvalidImageFormatException" => {
                    return RusotoError::Service(DetectTextError::InvalidImageFormat(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(DetectTextError::InvalidParameter(err.msg))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(DetectTextError::InvalidS3Object(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(DetectTextError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(DetectTextError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DetectTextError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DetectTextError {
    fn description(&self) -> &str {
        match *self {
            DetectTextError::AccessDenied(ref cause) => cause,
            DetectTextError::ImageTooLarge(ref cause) => cause,
            DetectTextError::InternalServerError(ref cause) => cause,
            DetectTextError::InvalidImageFormat(ref cause) => cause,
            DetectTextError::InvalidParameter(ref cause) => cause,
            DetectTextError::InvalidS3Object(ref cause) => cause,
            DetectTextError::ProvisionedThroughputExceeded(ref cause) => cause,
            DetectTextError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by GetCelebrityInfo
#[derive(Debug, PartialEq)]
pub enum GetCelebrityInfoError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl GetCelebrityInfoError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetCelebrityInfoError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(GetCelebrityInfoError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(GetCelebrityInfoError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(GetCelebrityInfoError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        GetCelebrityInfoError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetCelebrityInfoError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(GetCelebrityInfoError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetCelebrityInfoError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetCelebrityInfoError {
    fn description(&self) -> &str {
        match *self {
            GetCelebrityInfoError::AccessDenied(ref cause) => cause,
            GetCelebrityInfoError::InternalServerError(ref cause) => cause,
            GetCelebrityInfoError::InvalidParameter(ref cause) => cause,
            GetCelebrityInfoError::ProvisionedThroughputExceeded(ref cause) => cause,
            GetCelebrityInfoError::ResourceNotFound(ref cause) => cause,
            GetCelebrityInfoError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by GetCelebrityRecognition
#[derive(Debug, PartialEq)]
pub enum GetCelebrityRecognitionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl GetCelebrityRecognitionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetCelebrityRecognitionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(GetCelebrityRecognitionError::AccessDenied(
                        err.msg,
                    ))
                }
                "InternalServerError" => {
                    return RusotoError::Service(GetCelebrityRecognitionError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(
                        GetCelebrityRecognitionError::InvalidPaginationToken(err.msg),
                    )
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(GetCelebrityRecognitionError::InvalidParameter(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        GetCelebrityRecognitionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetCelebrityRecognitionError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(GetCelebrityRecognitionError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetCelebrityRecognitionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetCelebrityRecognitionError {
    fn description(&self) -> &str {
        match *self {
            GetCelebrityRecognitionError::AccessDenied(ref cause) => cause,
            GetCelebrityRecognitionError::InternalServerError(ref cause) => cause,
            GetCelebrityRecognitionError::InvalidPaginationToken(ref cause) => cause,
            GetCelebrityRecognitionError::InvalidParameter(ref cause) => cause,
            GetCelebrityRecognitionError::ProvisionedThroughputExceeded(ref cause) => cause,
            GetCelebrityRecognitionError::ResourceNotFound(ref cause) => cause,
            GetCelebrityRecognitionError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by GetContentModeration
#[derive(Debug, PartialEq)]
pub enum GetContentModerationError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl GetContentModerationError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetContentModerationError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(GetContentModerationError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(GetContentModerationError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(GetContentModerationError::InvalidPaginationToken(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(GetContentModerationError::InvalidParameter(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        GetContentModerationError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetContentModerationError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(GetContentModerationError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetContentModerationError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetContentModerationError {
    fn description(&self) -> &str {
        match *self {
            GetContentModerationError::AccessDenied(ref cause) => cause,
            GetContentModerationError::InternalServerError(ref cause) => cause,
            GetContentModerationError::InvalidPaginationToken(ref cause) => cause,
            GetContentModerationError::InvalidParameter(ref cause) => cause,
            GetContentModerationError::ProvisionedThroughputExceeded(ref cause) => cause,
            GetContentModerationError::ResourceNotFound(ref cause) => cause,
            GetContentModerationError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by GetFaceDetection
#[derive(Debug, PartialEq)]
pub enum GetFaceDetectionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl GetFaceDetectionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetFaceDetectionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(GetFaceDetectionError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(GetFaceDetectionError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(GetFaceDetectionError::InvalidPaginationToken(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(GetFaceDetectionError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        GetFaceDetectionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetFaceDetectionError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(GetFaceDetectionError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetFaceDetectionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetFaceDetectionError {
    fn description(&self) -> &str {
        match *self {
            GetFaceDetectionError::AccessDenied(ref cause) => cause,
            GetFaceDetectionError::InternalServerError(ref cause) => cause,
            GetFaceDetectionError::InvalidPaginationToken(ref cause) => cause,
            GetFaceDetectionError::InvalidParameter(ref cause) => cause,
            GetFaceDetectionError::ProvisionedThroughputExceeded(ref cause) => cause,
            GetFaceDetectionError::ResourceNotFound(ref cause) => cause,
            GetFaceDetectionError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by GetFaceSearch
#[derive(Debug, PartialEq)]
pub enum GetFaceSearchError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl GetFaceSearchError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetFaceSearchError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(GetFaceSearchError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(GetFaceSearchError::InternalServerError(err.msg))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(GetFaceSearchError::InvalidPaginationToken(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(GetFaceSearchError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(GetFaceSearchError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetFaceSearchError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(GetFaceSearchError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetFaceSearchError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetFaceSearchError {
    fn description(&self) -> &str {
        match *self {
            GetFaceSearchError::AccessDenied(ref cause) => cause,
            GetFaceSearchError::InternalServerError(ref cause) => cause,
            GetFaceSearchError::InvalidPaginationToken(ref cause) => cause,
            GetFaceSearchError::InvalidParameter(ref cause) => cause,
            GetFaceSearchError::ProvisionedThroughputExceeded(ref cause) => cause,
            GetFaceSearchError::ResourceNotFound(ref cause) => cause,
            GetFaceSearchError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by GetLabelDetection
#[derive(Debug, PartialEq)]
pub enum GetLabelDetectionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl GetLabelDetectionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetLabelDetectionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(GetLabelDetectionError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(GetLabelDetectionError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(GetLabelDetectionError::InvalidPaginationToken(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(GetLabelDetectionError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        GetLabelDetectionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetLabelDetectionError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(GetLabelDetectionError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetLabelDetectionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetLabelDetectionError {
    fn description(&self) -> &str {
        match *self {
            GetLabelDetectionError::AccessDenied(ref cause) => cause,
            GetLabelDetectionError::InternalServerError(ref cause) => cause,
            GetLabelDetectionError::InvalidPaginationToken(ref cause) => cause,
            GetLabelDetectionError::InvalidParameter(ref cause) => cause,
            GetLabelDetectionError::ProvisionedThroughputExceeded(ref cause) => cause,
            GetLabelDetectionError::ResourceNotFound(ref cause) => cause,
            GetLabelDetectionError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by GetPersonTracking
#[derive(Debug, PartialEq)]
pub enum GetPersonTrackingError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl GetPersonTrackingError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetPersonTrackingError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(GetPersonTrackingError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(GetPersonTrackingError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(GetPersonTrackingError::InvalidPaginationToken(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(GetPersonTrackingError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        GetPersonTrackingError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(GetPersonTrackingError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(GetPersonTrackingError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetPersonTrackingError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetPersonTrackingError {
    fn description(&self) -> &str {
        match *self {
            GetPersonTrackingError::AccessDenied(ref cause) => cause,
            GetPersonTrackingError::InternalServerError(ref cause) => cause,
            GetPersonTrackingError::InvalidPaginationToken(ref cause) => cause,
            GetPersonTrackingError::InvalidParameter(ref cause) => cause,
            GetPersonTrackingError::ProvisionedThroughputExceeded(ref cause) => cause,
            GetPersonTrackingError::ResourceNotFound(ref cause) => cause,
            GetPersonTrackingError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by IndexFaces
#[derive(Debug, PartialEq)]
pub enum IndexFacesError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide. </p>
    ImageTooLarge(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>The provided image format is not supported. </p>
    InvalidImageFormat(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl IndexFacesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<IndexFacesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(IndexFacesError::AccessDenied(err.msg))
                }
                "ImageTooLargeException" => {
                    return RusotoError::Service(IndexFacesError::ImageTooLarge(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(IndexFacesError::InternalServerError(err.msg))
                }
                "InvalidImageFormatException" => {
                    return RusotoError::Service(IndexFacesError::InvalidImageFormat(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(IndexFacesError::InvalidParameter(err.msg))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(IndexFacesError::InvalidS3Object(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(IndexFacesError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(IndexFacesError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(IndexFacesError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for IndexFacesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for IndexFacesError {
    fn description(&self) -> &str {
        match *self {
            IndexFacesError::AccessDenied(ref cause) => cause,
            IndexFacesError::ImageTooLarge(ref cause) => cause,
            IndexFacesError::InternalServerError(ref cause) => cause,
            IndexFacesError::InvalidImageFormat(ref cause) => cause,
            IndexFacesError::InvalidParameter(ref cause) => cause,
            IndexFacesError::InvalidS3Object(ref cause) => cause,
            IndexFacesError::ProvisionedThroughputExceeded(ref cause) => cause,
            IndexFacesError::ResourceNotFound(ref cause) => cause,
            IndexFacesError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by ListCollections
#[derive(Debug, PartialEq)]
pub enum ListCollectionsError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl ListCollectionsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListCollectionsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(ListCollectionsError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(ListCollectionsError::InternalServerError(err.msg))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(ListCollectionsError::InvalidPaginationToken(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(ListCollectionsError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        ListCollectionsError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(ListCollectionsError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(ListCollectionsError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListCollectionsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListCollectionsError {
    fn description(&self) -> &str {
        match *self {
            ListCollectionsError::AccessDenied(ref cause) => cause,
            ListCollectionsError::InternalServerError(ref cause) => cause,
            ListCollectionsError::InvalidPaginationToken(ref cause) => cause,
            ListCollectionsError::InvalidParameter(ref cause) => cause,
            ListCollectionsError::ProvisionedThroughputExceeded(ref cause) => cause,
            ListCollectionsError::ResourceNotFound(ref cause) => cause,
            ListCollectionsError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by ListFaces
#[derive(Debug, PartialEq)]
pub enum ListFacesError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl ListFacesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListFacesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(ListFacesError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(ListFacesError::InternalServerError(err.msg))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(ListFacesError::InvalidPaginationToken(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(ListFacesError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(ListFacesError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(ListFacesError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(ListFacesError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListFacesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListFacesError {
    fn description(&self) -> &str {
        match *self {
            ListFacesError::AccessDenied(ref cause) => cause,
            ListFacesError::InternalServerError(ref cause) => cause,
            ListFacesError::InvalidPaginationToken(ref cause) => cause,
            ListFacesError::InvalidParameter(ref cause) => cause,
            ListFacesError::ProvisionedThroughputExceeded(ref cause) => cause,
            ListFacesError::ResourceNotFound(ref cause) => cause,
            ListFacesError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by ListStreamProcessors
#[derive(Debug, PartialEq)]
pub enum ListStreamProcessorsError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Pagination token in the request is not valid.</p>
    InvalidPaginationToken(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl ListStreamProcessorsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListStreamProcessorsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(ListStreamProcessorsError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(ListStreamProcessorsError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidPaginationTokenException" => {
                    return RusotoError::Service(ListStreamProcessorsError::InvalidPaginationToken(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(ListStreamProcessorsError::InvalidParameter(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        ListStreamProcessorsError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ThrottlingException" => {
                    return RusotoError::Service(ListStreamProcessorsError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListStreamProcessorsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListStreamProcessorsError {
    fn description(&self) -> &str {
        match *self {
            ListStreamProcessorsError::AccessDenied(ref cause) => cause,
            ListStreamProcessorsError::InternalServerError(ref cause) => cause,
            ListStreamProcessorsError::InvalidPaginationToken(ref cause) => cause,
            ListStreamProcessorsError::InvalidParameter(ref cause) => cause,
            ListStreamProcessorsError::ProvisionedThroughputExceeded(ref cause) => cause,
            ListStreamProcessorsError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by RecognizeCelebrities
#[derive(Debug, PartialEq)]
pub enum RecognizeCelebritiesError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide. </p>
    ImageTooLarge(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>The provided image format is not supported. </p>
    InvalidImageFormat(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl RecognizeCelebritiesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<RecognizeCelebritiesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(RecognizeCelebritiesError::AccessDenied(err.msg))
                }
                "ImageTooLargeException" => {
                    return RusotoError::Service(RecognizeCelebritiesError::ImageTooLarge(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(RecognizeCelebritiesError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidImageFormatException" => {
                    return RusotoError::Service(RecognizeCelebritiesError::InvalidImageFormat(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(RecognizeCelebritiesError::InvalidParameter(
                        err.msg,
                    ))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(RecognizeCelebritiesError::InvalidS3Object(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        RecognizeCelebritiesError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ThrottlingException" => {
                    return RusotoError::Service(RecognizeCelebritiesError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for RecognizeCelebritiesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for RecognizeCelebritiesError {
    fn description(&self) -> &str {
        match *self {
            RecognizeCelebritiesError::AccessDenied(ref cause) => cause,
            RecognizeCelebritiesError::ImageTooLarge(ref cause) => cause,
            RecognizeCelebritiesError::InternalServerError(ref cause) => cause,
            RecognizeCelebritiesError::InvalidImageFormat(ref cause) => cause,
            RecognizeCelebritiesError::InvalidParameter(ref cause) => cause,
            RecognizeCelebritiesError::InvalidS3Object(ref cause) => cause,
            RecognizeCelebritiesError::ProvisionedThroughputExceeded(ref cause) => cause,
            RecognizeCelebritiesError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by SearchFaces
#[derive(Debug, PartialEq)]
pub enum SearchFacesError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl SearchFacesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<SearchFacesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(SearchFacesError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(SearchFacesError::InternalServerError(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(SearchFacesError::InvalidParameter(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(SearchFacesError::ProvisionedThroughputExceeded(
                        err.msg,
                    ))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(SearchFacesError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(SearchFacesError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for SearchFacesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for SearchFacesError {
    fn description(&self) -> &str {
        match *self {
            SearchFacesError::AccessDenied(ref cause) => cause,
            SearchFacesError::InternalServerError(ref cause) => cause,
            SearchFacesError::InvalidParameter(ref cause) => cause,
            SearchFacesError::ProvisionedThroughputExceeded(ref cause) => cause,
            SearchFacesError::ResourceNotFound(ref cause) => cause,
            SearchFacesError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by SearchFacesByImage
#[derive(Debug, PartialEq)]
pub enum SearchFacesByImageError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>The input image size exceeds the allowed limit. For more information, see Limits in Amazon Rekognition in the Amazon Rekognition Developer Guide. </p>
    ImageTooLarge(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>The provided image format is not supported. </p>
    InvalidImageFormat(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl SearchFacesByImageError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<SearchFacesByImageError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(SearchFacesByImageError::AccessDenied(err.msg))
                }
                "ImageTooLargeException" => {
                    return RusotoError::Service(SearchFacesByImageError::ImageTooLarge(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(SearchFacesByImageError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidImageFormatException" => {
                    return RusotoError::Service(SearchFacesByImageError::InvalidImageFormat(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(SearchFacesByImageError::InvalidParameter(err.msg))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(SearchFacesByImageError::InvalidS3Object(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        SearchFacesByImageError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(SearchFacesByImageError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(SearchFacesByImageError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for SearchFacesByImageError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for SearchFacesByImageError {
    fn description(&self) -> &str {
        match *self {
            SearchFacesByImageError::AccessDenied(ref cause) => cause,
            SearchFacesByImageError::ImageTooLarge(ref cause) => cause,
            SearchFacesByImageError::InternalServerError(ref cause) => cause,
            SearchFacesByImageError::InvalidImageFormat(ref cause) => cause,
            SearchFacesByImageError::InvalidParameter(ref cause) => cause,
            SearchFacesByImageError::InvalidS3Object(ref cause) => cause,
            SearchFacesByImageError::ProvisionedThroughputExceeded(ref cause) => cause,
            SearchFacesByImageError::ResourceNotFound(ref cause) => cause,
            SearchFacesByImageError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by StartCelebrityRecognition
#[derive(Debug, PartialEq)]
pub enum StartCelebrityRecognitionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>A <code>ClientRequestToken</code> input parameter was reused with an operation, but at least one of the other input parameters is different from the previous call to the operation.</p>
    IdempotentParameterMismatch(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>An Amazon Rekognition service limit was exceeded. For example, if you start too many Amazon Rekognition Video jobs concurrently, calls to start operations (<code>StartLabelDetection</code>, for example) will raise a <code>LimitExceededException</code> exception (HTTP status code: 400) until the number of concurrently running jobs is below the Amazon Rekognition service limit. </p>
    LimitExceeded(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
    /// <p>The file size or duration of the supplied media is too large. The maximum file size is 8GB. The maximum duration is 2 hours. </p>
    VideoTooLarge(String),
}

impl StartCelebrityRecognitionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartCelebrityRecognitionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(StartCelebrityRecognitionError::AccessDenied(
                        err.msg,
                    ))
                }
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        StartCelebrityRecognitionError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerError" => {
                    return RusotoError::Service(
                        StartCelebrityRecognitionError::InternalServerError(err.msg),
                    )
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(StartCelebrityRecognitionError::InvalidParameter(
                        err.msg,
                    ))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(StartCelebrityRecognitionError::InvalidS3Object(
                        err.msg,
                    ))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(StartCelebrityRecognitionError::LimitExceeded(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        StartCelebrityRecognitionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ThrottlingException" => {
                    return RusotoError::Service(StartCelebrityRecognitionError::Throttling(
                        err.msg,
                    ))
                }
                "VideoTooLargeException" => {
                    return RusotoError::Service(StartCelebrityRecognitionError::VideoTooLarge(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StartCelebrityRecognitionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StartCelebrityRecognitionError {
    fn description(&self) -> &str {
        match *self {
            StartCelebrityRecognitionError::AccessDenied(ref cause) => cause,
            StartCelebrityRecognitionError::IdempotentParameterMismatch(ref cause) => cause,
            StartCelebrityRecognitionError::InternalServerError(ref cause) => cause,
            StartCelebrityRecognitionError::InvalidParameter(ref cause) => cause,
            StartCelebrityRecognitionError::InvalidS3Object(ref cause) => cause,
            StartCelebrityRecognitionError::LimitExceeded(ref cause) => cause,
            StartCelebrityRecognitionError::ProvisionedThroughputExceeded(ref cause) => cause,
            StartCelebrityRecognitionError::Throttling(ref cause) => cause,
            StartCelebrityRecognitionError::VideoTooLarge(ref cause) => cause,
        }
    }
}
/// Errors returned by StartContentModeration
#[derive(Debug, PartialEq)]
pub enum StartContentModerationError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>A <code>ClientRequestToken</code> input parameter was reused with an operation, but at least one of the other input parameters is different from the previous call to the operation.</p>
    IdempotentParameterMismatch(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>An Amazon Rekognition service limit was exceeded. For example, if you start too many Amazon Rekognition Video jobs concurrently, calls to start operations (<code>StartLabelDetection</code>, for example) will raise a <code>LimitExceededException</code> exception (HTTP status code: 400) until the number of concurrently running jobs is below the Amazon Rekognition service limit. </p>
    LimitExceeded(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
    /// <p>The file size or duration of the supplied media is too large. The maximum file size is 8GB. The maximum duration is 2 hours. </p>
    VideoTooLarge(String),
}

impl StartContentModerationError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartContentModerationError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(StartContentModerationError::AccessDenied(err.msg))
                }
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        StartContentModerationError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerError" => {
                    return RusotoError::Service(StartContentModerationError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(StartContentModerationError::InvalidParameter(
                        err.msg,
                    ))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(StartContentModerationError::InvalidS3Object(
                        err.msg,
                    ))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(StartContentModerationError::LimitExceeded(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        StartContentModerationError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ThrottlingException" => {
                    return RusotoError::Service(StartContentModerationError::Throttling(err.msg))
                }
                "VideoTooLargeException" => {
                    return RusotoError::Service(StartContentModerationError::VideoTooLarge(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StartContentModerationError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StartContentModerationError {
    fn description(&self) -> &str {
        match *self {
            StartContentModerationError::AccessDenied(ref cause) => cause,
            StartContentModerationError::IdempotentParameterMismatch(ref cause) => cause,
            StartContentModerationError::InternalServerError(ref cause) => cause,
            StartContentModerationError::InvalidParameter(ref cause) => cause,
            StartContentModerationError::InvalidS3Object(ref cause) => cause,
            StartContentModerationError::LimitExceeded(ref cause) => cause,
            StartContentModerationError::ProvisionedThroughputExceeded(ref cause) => cause,
            StartContentModerationError::Throttling(ref cause) => cause,
            StartContentModerationError::VideoTooLarge(ref cause) => cause,
        }
    }
}
/// Errors returned by StartFaceDetection
#[derive(Debug, PartialEq)]
pub enum StartFaceDetectionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>A <code>ClientRequestToken</code> input parameter was reused with an operation, but at least one of the other input parameters is different from the previous call to the operation.</p>
    IdempotentParameterMismatch(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>An Amazon Rekognition service limit was exceeded. For example, if you start too many Amazon Rekognition Video jobs concurrently, calls to start operations (<code>StartLabelDetection</code>, for example) will raise a <code>LimitExceededException</code> exception (HTTP status code: 400) until the number of concurrently running jobs is below the Amazon Rekognition service limit. </p>
    LimitExceeded(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
    /// <p>The file size or duration of the supplied media is too large. The maximum file size is 8GB. The maximum duration is 2 hours. </p>
    VideoTooLarge(String),
}

impl StartFaceDetectionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartFaceDetectionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(StartFaceDetectionError::AccessDenied(err.msg))
                }
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        StartFaceDetectionError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerError" => {
                    return RusotoError::Service(StartFaceDetectionError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(StartFaceDetectionError::InvalidParameter(err.msg))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(StartFaceDetectionError::InvalidS3Object(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(StartFaceDetectionError::LimitExceeded(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        StartFaceDetectionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ThrottlingException" => {
                    return RusotoError::Service(StartFaceDetectionError::Throttling(err.msg))
                }
                "VideoTooLargeException" => {
                    return RusotoError::Service(StartFaceDetectionError::VideoTooLarge(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StartFaceDetectionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StartFaceDetectionError {
    fn description(&self) -> &str {
        match *self {
            StartFaceDetectionError::AccessDenied(ref cause) => cause,
            StartFaceDetectionError::IdempotentParameterMismatch(ref cause) => cause,
            StartFaceDetectionError::InternalServerError(ref cause) => cause,
            StartFaceDetectionError::InvalidParameter(ref cause) => cause,
            StartFaceDetectionError::InvalidS3Object(ref cause) => cause,
            StartFaceDetectionError::LimitExceeded(ref cause) => cause,
            StartFaceDetectionError::ProvisionedThroughputExceeded(ref cause) => cause,
            StartFaceDetectionError::Throttling(ref cause) => cause,
            StartFaceDetectionError::VideoTooLarge(ref cause) => cause,
        }
    }
}
/// Errors returned by StartFaceSearch
#[derive(Debug, PartialEq)]
pub enum StartFaceSearchError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>A <code>ClientRequestToken</code> input parameter was reused with an operation, but at least one of the other input parameters is different from the previous call to the operation.</p>
    IdempotentParameterMismatch(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>An Amazon Rekognition service limit was exceeded. For example, if you start too many Amazon Rekognition Video jobs concurrently, calls to start operations (<code>StartLabelDetection</code>, for example) will raise a <code>LimitExceededException</code> exception (HTTP status code: 400) until the number of concurrently running jobs is below the Amazon Rekognition service limit. </p>
    LimitExceeded(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
    /// <p>The file size or duration of the supplied media is too large. The maximum file size is 8GB. The maximum duration is 2 hours. </p>
    VideoTooLarge(String),
}

impl StartFaceSearchError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartFaceSearchError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(StartFaceSearchError::AccessDenied(err.msg))
                }
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(StartFaceSearchError::IdempotentParameterMismatch(
                        err.msg,
                    ))
                }
                "InternalServerError" => {
                    return RusotoError::Service(StartFaceSearchError::InternalServerError(err.msg))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(StartFaceSearchError::InvalidParameter(err.msg))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(StartFaceSearchError::InvalidS3Object(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(StartFaceSearchError::LimitExceeded(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        StartFaceSearchError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(StartFaceSearchError::ResourceNotFound(err.msg))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(StartFaceSearchError::Throttling(err.msg))
                }
                "VideoTooLargeException" => {
                    return RusotoError::Service(StartFaceSearchError::VideoTooLarge(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StartFaceSearchError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StartFaceSearchError {
    fn description(&self) -> &str {
        match *self {
            StartFaceSearchError::AccessDenied(ref cause) => cause,
            StartFaceSearchError::IdempotentParameterMismatch(ref cause) => cause,
            StartFaceSearchError::InternalServerError(ref cause) => cause,
            StartFaceSearchError::InvalidParameter(ref cause) => cause,
            StartFaceSearchError::InvalidS3Object(ref cause) => cause,
            StartFaceSearchError::LimitExceeded(ref cause) => cause,
            StartFaceSearchError::ProvisionedThroughputExceeded(ref cause) => cause,
            StartFaceSearchError::ResourceNotFound(ref cause) => cause,
            StartFaceSearchError::Throttling(ref cause) => cause,
            StartFaceSearchError::VideoTooLarge(ref cause) => cause,
        }
    }
}
/// Errors returned by StartLabelDetection
#[derive(Debug, PartialEq)]
pub enum StartLabelDetectionError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>A <code>ClientRequestToken</code> input parameter was reused with an operation, but at least one of the other input parameters is different from the previous call to the operation.</p>
    IdempotentParameterMismatch(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>An Amazon Rekognition service limit was exceeded. For example, if you start too many Amazon Rekognition Video jobs concurrently, calls to start operations (<code>StartLabelDetection</code>, for example) will raise a <code>LimitExceededException</code> exception (HTTP status code: 400) until the number of concurrently running jobs is below the Amazon Rekognition service limit. </p>
    LimitExceeded(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
    /// <p>The file size or duration of the supplied media is too large. The maximum file size is 8GB. The maximum duration is 2 hours. </p>
    VideoTooLarge(String),
}

impl StartLabelDetectionError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartLabelDetectionError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(StartLabelDetectionError::AccessDenied(err.msg))
                }
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        StartLabelDetectionError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerError" => {
                    return RusotoError::Service(StartLabelDetectionError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(StartLabelDetectionError::InvalidParameter(
                        err.msg,
                    ))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(StartLabelDetectionError::InvalidS3Object(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(StartLabelDetectionError::LimitExceeded(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        StartLabelDetectionError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ThrottlingException" => {
                    return RusotoError::Service(StartLabelDetectionError::Throttling(err.msg))
                }
                "VideoTooLargeException" => {
                    return RusotoError::Service(StartLabelDetectionError::VideoTooLarge(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StartLabelDetectionError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StartLabelDetectionError {
    fn description(&self) -> &str {
        match *self {
            StartLabelDetectionError::AccessDenied(ref cause) => cause,
            StartLabelDetectionError::IdempotentParameterMismatch(ref cause) => cause,
            StartLabelDetectionError::InternalServerError(ref cause) => cause,
            StartLabelDetectionError::InvalidParameter(ref cause) => cause,
            StartLabelDetectionError::InvalidS3Object(ref cause) => cause,
            StartLabelDetectionError::LimitExceeded(ref cause) => cause,
            StartLabelDetectionError::ProvisionedThroughputExceeded(ref cause) => cause,
            StartLabelDetectionError::Throttling(ref cause) => cause,
            StartLabelDetectionError::VideoTooLarge(ref cause) => cause,
        }
    }
}
/// Errors returned by StartPersonTracking
#[derive(Debug, PartialEq)]
pub enum StartPersonTrackingError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>A <code>ClientRequestToken</code> input parameter was reused with an operation, but at least one of the other input parameters is different from the previous call to the operation.</p>
    IdempotentParameterMismatch(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>Amazon Rekognition is unable to access the S3 object specified in the request.</p>
    InvalidS3Object(String),
    /// <p>An Amazon Rekognition service limit was exceeded. For example, if you start too many Amazon Rekognition Video jobs concurrently, calls to start operations (<code>StartLabelDetection</code>, for example) will raise a <code>LimitExceededException</code> exception (HTTP status code: 400) until the number of concurrently running jobs is below the Amazon Rekognition service limit. </p>
    LimitExceeded(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
    /// <p>The file size or duration of the supplied media is too large. The maximum file size is 8GB. The maximum duration is 2 hours. </p>
    VideoTooLarge(String),
}

impl StartPersonTrackingError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartPersonTrackingError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(StartPersonTrackingError::AccessDenied(err.msg))
                }
                "IdempotentParameterMismatchException" => {
                    return RusotoError::Service(
                        StartPersonTrackingError::IdempotentParameterMismatch(err.msg),
                    )
                }
                "InternalServerError" => {
                    return RusotoError::Service(StartPersonTrackingError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(StartPersonTrackingError::InvalidParameter(
                        err.msg,
                    ))
                }
                "InvalidS3ObjectException" => {
                    return RusotoError::Service(StartPersonTrackingError::InvalidS3Object(err.msg))
                }
                "LimitExceededException" => {
                    return RusotoError::Service(StartPersonTrackingError::LimitExceeded(err.msg))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        StartPersonTrackingError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ThrottlingException" => {
                    return RusotoError::Service(StartPersonTrackingError::Throttling(err.msg))
                }
                "VideoTooLargeException" => {
                    return RusotoError::Service(StartPersonTrackingError::VideoTooLarge(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StartPersonTrackingError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StartPersonTrackingError {
    fn description(&self) -> &str {
        match *self {
            StartPersonTrackingError::AccessDenied(ref cause) => cause,
            StartPersonTrackingError::IdempotentParameterMismatch(ref cause) => cause,
            StartPersonTrackingError::InternalServerError(ref cause) => cause,
            StartPersonTrackingError::InvalidParameter(ref cause) => cause,
            StartPersonTrackingError::InvalidS3Object(ref cause) => cause,
            StartPersonTrackingError::LimitExceeded(ref cause) => cause,
            StartPersonTrackingError::ProvisionedThroughputExceeded(ref cause) => cause,
            StartPersonTrackingError::Throttling(ref cause) => cause,
            StartPersonTrackingError::VideoTooLarge(ref cause) => cause,
        }
    }
}
/// Errors returned by StartStreamProcessor
#[derive(Debug, PartialEq)]
pub enum StartStreamProcessorError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p><p/></p>
    ResourceInUse(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl StartStreamProcessorError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartStreamProcessorError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(StartStreamProcessorError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(StartStreamProcessorError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(StartStreamProcessorError::InvalidParameter(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        StartStreamProcessorError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceInUseException" => {
                    return RusotoError::Service(StartStreamProcessorError::ResourceInUse(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(StartStreamProcessorError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(StartStreamProcessorError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StartStreamProcessorError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StartStreamProcessorError {
    fn description(&self) -> &str {
        match *self {
            StartStreamProcessorError::AccessDenied(ref cause) => cause,
            StartStreamProcessorError::InternalServerError(ref cause) => cause,
            StartStreamProcessorError::InvalidParameter(ref cause) => cause,
            StartStreamProcessorError::ProvisionedThroughputExceeded(ref cause) => cause,
            StartStreamProcessorError::ResourceInUse(ref cause) => cause,
            StartStreamProcessorError::ResourceNotFound(ref cause) => cause,
            StartStreamProcessorError::Throttling(ref cause) => cause,
        }
    }
}
/// Errors returned by StopStreamProcessor
#[derive(Debug, PartialEq)]
pub enum StopStreamProcessorError {
    /// <p>You are not authorized to perform the action.</p>
    AccessDenied(String),
    /// <p>Amazon Rekognition experienced a service issue. Try your call again.</p>
    InternalServerError(String),
    /// <p>Input parameter violated a constraint. Validate your parameter before calling the API operation again.</p>
    InvalidParameter(String),
    /// <p>The number of requests exceeded your throughput limit. If you want to increase this limit, contact Amazon Rekognition.</p>
    ProvisionedThroughputExceeded(String),
    /// <p><p/></p>
    ResourceInUse(String),
    /// <p>The collection specified in the request cannot be found.</p>
    ResourceNotFound(String),
    /// <p>Amazon Rekognition is temporarily unable to process the request. Try your call again.</p>
    Throttling(String),
}

impl StopStreamProcessorError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopStreamProcessorError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "AccessDeniedException" => {
                    return RusotoError::Service(StopStreamProcessorError::AccessDenied(err.msg))
                }
                "InternalServerError" => {
                    return RusotoError::Service(StopStreamProcessorError::InternalServerError(
                        err.msg,
                    ))
                }
                "InvalidParameterException" => {
                    return RusotoError::Service(StopStreamProcessorError::InvalidParameter(
                        err.msg,
                    ))
                }
                "ProvisionedThroughputExceededException" => {
                    return RusotoError::Service(
                        StopStreamProcessorError::ProvisionedThroughputExceeded(err.msg),
                    )
                }
                "ResourceInUseException" => {
                    return RusotoError::Service(StopStreamProcessorError::ResourceInUse(err.msg))
                }
                "ResourceNotFoundException" => {
                    return RusotoError::Service(StopStreamProcessorError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ThrottlingException" => {
                    return RusotoError::Service(StopStreamProcessorError::Throttling(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StopStreamProcessorError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StopStreamProcessorError {
    fn description(&self) -> &str {
        match *self {
            StopStreamProcessorError::AccessDenied(ref cause) => cause,
            StopStreamProcessorError::InternalServerError(ref cause) => cause,
            StopStreamProcessorError::InvalidParameter(ref cause) => cause,
            StopStreamProcessorError::ProvisionedThroughputExceeded(ref cause) => cause,
            StopStreamProcessorError::ResourceInUse(ref cause) => cause,
            StopStreamProcessorError::ResourceNotFound(ref cause) => cause,
            StopStreamProcessorError::Throttling(ref cause) => cause,
        }
    }
}
/// Trait representing the capabilities of the Amazon Rekognition API. Amazon Rekognition clients implement this trait.
pub trait Rekognition {
    /// <p>Compares a face in the <i>source</i> input image with each of the 100 largest faces detected in the <i>target</i> input image. </p> <note> <p> If the source image contains multiple faces, the service detects the largest face and compares it with each face detected in the target image. </p> </note> <p>You pass the input and target images either as base64-encoded image bytes or as references to images in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes isn't supported. The image must be formatted as a PNG or JPEG file. </p> <p>In response, the operation returns an array of face matches ordered by similarity score in descending order. For each face match, the response provides a bounding box of the face, facial landmarks, pose details (pitch, role, and yaw), quality (brightness and sharpness), and confidence value (indicating the level of confidence that the bounding box contains a face). The response also provides a similarity score, which indicates how closely the faces match. </p> <note> <p>By default, only faces with a similarity score of greater than or equal to 80% are returned in the response. You can change this value by specifying the <code>SimilarityThreshold</code> parameter.</p> </note> <p> <code>CompareFaces</code> also returns an array of faces that don't match the source image. For each face, it returns a bounding box, confidence value, landmarks, pose details, and quality. The response also returns information about the face in the source image, including the bounding box of the face and confidence value.</p> <p>If the image doesn't contain Exif metadata, <code>CompareFaces</code> returns orientation information for the source and target images. Use these values to display the images with the correct image orientation.</p> <p>If no faces are detected in the source or target images, <code>CompareFaces</code> returns an <code>InvalidParameterException</code> error. </p> <note> <p> This is a stateless API operation. That is, data returned by this operation doesn't persist.</p> </note> <p>For an example, see Comparing Faces in Images in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:CompareFaces</code> action.</p>
    fn compare_faces(
        &self,
        input: CompareFacesRequest,
    ) -> RusotoFuture<CompareFacesResponse, CompareFacesError>;

    /// <p>Creates a collection in an AWS Region. You can add faces to the collection using the <a>IndexFaces</a> operation. </p> <p>For example, you might create collections, one for each of your application users. A user can then index faces using the <code>IndexFaces</code> operation and persist results in a specific collection. Then, a user can search the collection for faces in the user-specific container. </p> <p>When you create a collection, it is associated with the latest version of the face model version.</p> <note> <p>Collection names are case-sensitive.</p> </note> <p>This operation requires permissions to perform the <code>rekognition:CreateCollection</code> action.</p>
    fn create_collection(
        &self,
        input: CreateCollectionRequest,
    ) -> RusotoFuture<CreateCollectionResponse, CreateCollectionError>;

    /// <p>Creates an Amazon Rekognition stream processor that you can use to detect and recognize faces in a streaming video.</p> <p>Amazon Rekognition Video is a consumer of live video from Amazon Kinesis Video Streams. Amazon Rekognition Video sends analysis results to Amazon Kinesis Data Streams.</p> <p>You provide as input a Kinesis video stream (<code>Input</code>) and a Kinesis data stream (<code>Output</code>) stream. You also specify the face recognition criteria in <code>Settings</code>. For example, the collection containing faces that you want to recognize. Use <code>Name</code> to assign an identifier for the stream processor. You use <code>Name</code> to manage the stream processor. For example, you can start processing the source video by calling <a>StartStreamProcessor</a> with the <code>Name</code> field. </p> <p>After you have finished analyzing a streaming video, use <a>StopStreamProcessor</a> to stop processing. You can delete the stream processor by calling <a>DeleteStreamProcessor</a>.</p>
    fn create_stream_processor(
        &self,
        input: CreateStreamProcessorRequest,
    ) -> RusotoFuture<CreateStreamProcessorResponse, CreateStreamProcessorError>;

    /// <p>Deletes the specified collection. Note that this operation removes all faces in the collection. For an example, see <a>delete-collection-procedure</a>.</p> <p>This operation requires permissions to perform the <code>rekognition:DeleteCollection</code> action.</p>
    fn delete_collection(
        &self,
        input: DeleteCollectionRequest,
    ) -> RusotoFuture<DeleteCollectionResponse, DeleteCollectionError>;

    /// <p>Deletes faces from a collection. You specify a collection ID and an array of face IDs to remove from the collection.</p> <p>This operation requires permissions to perform the <code>rekognition:DeleteFaces</code> action.</p>
    fn delete_faces(
        &self,
        input: DeleteFacesRequest,
    ) -> RusotoFuture<DeleteFacesResponse, DeleteFacesError>;

    /// <p>Deletes the stream processor identified by <code>Name</code>. You assign the value for <code>Name</code> when you create the stream processor with <a>CreateStreamProcessor</a>. You might not be able to use the same name for a stream processor for a few seconds after calling <code>DeleteStreamProcessor</code>.</p>
    fn delete_stream_processor(
        &self,
        input: DeleteStreamProcessorRequest,
    ) -> RusotoFuture<DeleteStreamProcessorResponse, DeleteStreamProcessorError>;

    /// <p>Describes the specified collection. You can use <code>DescribeCollection</code> to get information, such as the number of faces indexed into a collection and the version of the model used by the collection for face detection.</p> <p>For more information, see Describing a Collection in the Amazon Rekognition Developer Guide.</p>
    fn describe_collection(
        &self,
        input: DescribeCollectionRequest,
    ) -> RusotoFuture<DescribeCollectionResponse, DescribeCollectionError>;

    /// <p>Provides information about a stream processor created by <a>CreateStreamProcessor</a>. You can get information about the input and output streams, the input parameters for the face recognition being performed, and the current status of the stream processor.</p>
    fn describe_stream_processor(
        &self,
        input: DescribeStreamProcessorRequest,
    ) -> RusotoFuture<DescribeStreamProcessorResponse, DescribeStreamProcessorError>;

    /// <p>Detects faces within an image that is provided as input.</p> <p> <code>DetectFaces</code> detects the 100 largest faces in the image. For each face detected, the operation returns face details. These details include a bounding box of the face, a confidence value (that the bounding box contains a face), and a fixed set of attributes such as facial landmarks (for example, coordinates of eye and mouth), gender, presence of beard, sunglasses, and so on. </p> <p>The face-detection algorithm is most effective on frontal faces. For non-frontal or obscured faces, the algorithm might not detect the faces or might detect faces with lower confidence. </p> <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p> <note> <p>This is a stateless API operation. That is, the operation does not persist any data.</p> </note> <p>This operation requires permissions to perform the <code>rekognition:DetectFaces</code> action. </p>
    fn detect_faces(
        &self,
        input: DetectFacesRequest,
    ) -> RusotoFuture<DetectFacesResponse, DetectFacesError>;

    /// <p>Detects instances of real-world entities within an image (JPEG or PNG) provided as input. This includes objects like flower, tree, and table; events like wedding, graduation, and birthday party; and concepts like landscape, evening, and nature. </p> <p>For an example, see Analyzing Images Stored in an Amazon S3 Bucket in the Amazon Rekognition Developer Guide.</p> <note> <p> <code>DetectLabels</code> does not support the detection of activities. However, activity detection is supported for label detection in videos. For more information, see StartLabelDetection in the Amazon Rekognition Developer Guide.</p> </note> <p>You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p> <p> For each object, scene, and concept the API returns one or more labels. Each label provides the object name, and the level of confidence that the image contains the object. For example, suppose the input image has a lighthouse, the sea, and a rock. The response includes all three labels, one for each object. </p> <p> <code>{Name: lighthouse, Confidence: 98.4629}</code> </p> <p> <code>{Name: rock,Confidence: 79.2097}</code> </p> <p> <code> {Name: sea,Confidence: 75.061}</code> </p> <p>In the preceding example, the operation returns one label for each of the three objects. The operation can also return multiple labels for the same object in the image. For example, if the input image shows a flower (for example, a tulip), the operation might return the following three labels. </p> <p> <code>{Name: flower,Confidence: 99.0562}</code> </p> <p> <code>{Name: plant,Confidence: 99.0562}</code> </p> <p> <code>{Name: tulip,Confidence: 99.0562}</code> </p> <p>In this example, the detection algorithm more precisely identifies the flower as a tulip.</p> <p>In response, the API returns an array of labels. In addition, the response also includes the orientation correction. Optionally, you can specify <code>MinConfidence</code> to control the confidence threshold for the labels returned. The default is 55%. You can also add the <code>MaxLabels</code> parameter to limit the number of labels returned. </p> <note> <p>If the object detected is a person, the operation doesn't provide the same facial details that the <a>DetectFaces</a> operation provides.</p> </note> <p> <code>DetectLabels</code> returns bounding boxes for instances of common object labels in an array of <a>Instance</a> objects. An <code>Instance</code> object contains a <a>BoundingBox</a> object, for the location of the label on the image. It also includes the confidence by which the bounding box was detected.</p> <p> <code>DetectLabels</code> also returns a hierarchical taxonomy of detected labels. For example, a detected car might be assigned the label <i>car</i>. The label <i>car</i> has two parent labels: <i>Vehicle</i> (its parent) and <i>Transportation</i> (its grandparent). The response returns the entire list of ancestors for a label. Each ancestor is a unique label in the response. In the previous example, <i>Car</i>, <i>Vehicle</i>, and <i>Transportation</i> are returned as unique labels in the response. </p> <p>This is a stateless API operation. That is, the operation does not persist any data.</p> <p>This operation requires permissions to perform the <code>rekognition:DetectLabels</code> action. </p>
    fn detect_labels(
        &self,
        input: DetectLabelsRequest,
    ) -> RusotoFuture<DetectLabelsResponse, DetectLabelsError>;

    /// <p>Detects explicit or suggestive adult content in a specified JPEG or PNG format image. Use <code>DetectModerationLabels</code> to moderate images depending on your requirements. For example, you might want to filter images that contain nudity, but not images containing suggestive content.</p> <p>To filter images, use the labels returned by <code>DetectModerationLabels</code> to determine which types of content are appropriate.</p> <p>For information about moderation labels, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p> <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p>
    fn detect_moderation_labels(
        &self,
        input: DetectModerationLabelsRequest,
    ) -> RusotoFuture<DetectModerationLabelsResponse, DetectModerationLabelsError>;

    /// <p>Detects text in the input image and converts it into machine-readable text.</p> <p>Pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, you must pass it as a reference to an image in an Amazon S3 bucket. For the AWS CLI, passing image bytes is not supported. The image must be either a .png or .jpeg formatted file. </p> <p>The <code>DetectText</code> operation returns text in an array of <a>TextDetection</a> elements, <code>TextDetections</code>. Each <code>TextDetection</code> element provides information about a single word or line of text that was detected in the image. </p> <p>A word is one or more ISO basic latin script characters that are not separated by spaces. <code>DetectText</code> can detect up to 50 words in an image.</p> <p>A line is a string of equally spaced words. A line isn't necessarily a complete sentence. For example, a driver's license number is detected as a line. A line ends when there is no aligned text after it. Also, a line ends when there is a large gap between words, relative to the length of the words. This means, depending on the gap between words, Amazon Rekognition may detect multiple lines in text aligned in the same direction. Periods don't represent the end of a line. If a sentence spans multiple lines, the <code>DetectText</code> operation returns multiple lines.</p> <p>To determine whether a <code>TextDetection</code> element is a line of text or a word, use the <code>TextDetection</code> object <code>Type</code> field. </p> <p>To be detected, text must be within +/- 90 degrees orientation of the horizontal axis.</p> <p>For more information, see DetectText in the Amazon Rekognition Developer Guide.</p>
    fn detect_text(
        &self,
        input: DetectTextRequest,
    ) -> RusotoFuture<DetectTextResponse, DetectTextError>;

    /// <p>Gets the name and additional information about a celebrity based on his or her Amazon Rekognition ID. The additional information is returned as an array of URLs. If there is no additional information about the celebrity, this list is empty.</p> <p>For more information, see Recognizing Celebrities in an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:GetCelebrityInfo</code> action. </p>
    fn get_celebrity_info(
        &self,
        input: GetCelebrityInfoRequest,
    ) -> RusotoFuture<GetCelebrityInfoResponse, GetCelebrityInfoError>;

    /// <p>Gets the celebrity recognition results for a Amazon Rekognition Video analysis started by <a>StartCelebrityRecognition</a>.</p> <p>Celebrity recognition in a video is an asynchronous operation. Analysis is started by a call to <a>StartCelebrityRecognition</a> which returns a job identifier (<code>JobId</code>). When the celebrity recognition operation finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartCelebrityRecognition</code>. To get the results of the celebrity recognition analysis, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <code>GetCelebrityDetection</code> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartCelebrityDetection</code>. </p> <p>For more information, see Working With Stored Videos in the Amazon Rekognition Developer Guide.</p> <p> <code>GetCelebrityRecognition</code> returns detected celebrities and the time(s) they are detected in an array (<code>Celebrities</code>) of <a>CelebrityRecognition</a> objects. Each <code>CelebrityRecognition</code> contains information about the celebrity in a <a>CelebrityDetail</a> object and the time, <code>Timestamp</code>, the celebrity was detected. </p> <note> <p> <code>GetCelebrityRecognition</code> only returns the default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed in the <code>Face</code> object of the following response syntax are not returned. For more information, see FaceDetail in the Amazon Rekognition Developer Guide. </p> </note> <p>By default, the <code>Celebrities</code> array is sorted by time (milliseconds from the start of the video). You can also sort the array by celebrity by specifying the value <code>ID</code> in the <code>SortBy</code> input parameter.</p> <p>The <code>CelebrityDetail</code> object includes the celebrity identifer and additional information urls. If you don't store the additional information urls, you can get them later by calling <a>GetCelebrityInfo</a> with the celebrity identifer.</p> <p>No information is returned for faces not recognized as celebrities.</p> <p>Use MaxResults parameter to limit the number of labels returned. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetCelebrityDetection</code> and populate the <code>NextToken</code> request parameter with the token value returned from the previous call to <code>GetCelebrityRecognition</code>.</p>
    fn get_celebrity_recognition(
        &self,
        input: GetCelebrityRecognitionRequest,
    ) -> RusotoFuture<GetCelebrityRecognitionResponse, GetCelebrityRecognitionError>;

    /// <p>Gets the content moderation analysis results for a Amazon Rekognition Video analysis started by <a>StartContentModeration</a>.</p> <p>Content moderation analysis of a video is an asynchronous operation. You start analysis by calling <a>StartContentModeration</a> which returns a job identifier (<code>JobId</code>). When analysis finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartContentModeration</code>. To get the results of the content moderation analysis, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <code>GetContentModeration</code> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartContentModeration</code>. </p> <p>For more information, see Working with Stored Videos in the Amazon Rekognition Devlopers Guide.</p> <p> <code>GetContentModeration</code> returns detected content moderation labels, and the time they are detected, in an array, <code>ModerationLabels</code>, of <a>ContentModerationDetection</a> objects. </p> <p>By default, the moderated labels are returned sorted by time, in milliseconds from the start of the video. You can also sort them by moderated label by specifying <code>NAME</code> for the <code>SortBy</code> input parameter. </p> <p>Since video analysis can return a large number of results, use the <code>MaxResults</code> parameter to limit the number of labels returned in a single call to <code>GetContentModeration</code>. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetContentModeration</code> and populate the <code>NextToken</code> request parameter with the value of <code>NextToken</code> returned from the previous call to <code>GetContentModeration</code>.</p> <p>For more information, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p>
    fn get_content_moderation(
        &self,
        input: GetContentModerationRequest,
    ) -> RusotoFuture<GetContentModerationResponse, GetContentModerationError>;

    /// <p>Gets face detection results for a Amazon Rekognition Video analysis started by <a>StartFaceDetection</a>.</p> <p>Face detection with Amazon Rekognition Video is an asynchronous operation. You start face detection by calling <a>StartFaceDetection</a> which returns a job identifier (<code>JobId</code>). When the face detection operation finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartFaceDetection</code>. To get the results of the face detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceDetection</code>.</p> <p> <code>GetFaceDetection</code> returns an array of detected faces (<code>Faces</code>) sorted by the time the faces were detected. </p> <p>Use MaxResults parameter to limit the number of labels returned. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetFaceDetection</code> and populate the <code>NextToken</code> request parameter with the token value returned from the previous call to <code>GetFaceDetection</code>.</p>
    fn get_face_detection(
        &self,
        input: GetFaceDetectionRequest,
    ) -> RusotoFuture<GetFaceDetectionResponse, GetFaceDetectionError>;

    /// <p>Gets the face search results for Amazon Rekognition Video face search started by <a>StartFaceSearch</a>. The search returns faces in a collection that match the faces of persons detected in a video. It also includes the time(s) that faces are matched in the video.</p> <p>Face search in a video is an asynchronous operation. You start face search by calling to <a>StartFaceSearch</a> which returns a job identifier (<code>JobId</code>). When the search operation finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartFaceSearch</code>. To get the search results, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <code>GetFaceSearch</code> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceSearch</code>.</p> <p>For more information, see Searching Faces in a Collection in the Amazon Rekognition Developer Guide.</p> <p>The search results are retured in an array, <code>Persons</code>, of <a>PersonMatch</a> objects. Each<code>PersonMatch</code> element contains details about the matching faces in the input collection, person information (facial attributes, bounding boxes, and person identifer) for the matched person, and the time the person was matched in the video.</p> <note> <p> <code>GetFaceSearch</code> only returns the default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed in the <code>Face</code> object of the following response syntax are not returned. For more information, see FaceDetail in the Amazon Rekognition Developer Guide. </p> </note> <p>By default, the <code>Persons</code> array is sorted by the time, in milliseconds from the start of the video, persons are matched. You can also sort by persons by specifying <code>INDEX</code> for the <code>SORTBY</code> input parameter.</p>
    fn get_face_search(
        &self,
        input: GetFaceSearchRequest,
    ) -> RusotoFuture<GetFaceSearchResponse, GetFaceSearchError>;

    /// <p>Gets the label detection results of a Amazon Rekognition Video analysis started by <a>StartLabelDetection</a>. </p> <p>The label detection operation is started by a call to <a>StartLabelDetection</a> which returns a job identifier (<code>JobId</code>). When the label detection operation finishes, Amazon Rekognition publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartlabelDetection</code>. To get the results of the label detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartLabelDetection</code>.</p> <p> <code>GetLabelDetection</code> returns an array of detected labels (<code>Labels</code>) sorted by the time the labels were detected. You can also sort by the label name by specifying <code>NAME</code> for the <code>SortBy</code> input parameter.</p> <p>The labels returned include the label name, the percentage confidence in the accuracy of the detected label, and the time the label was detected in the video.</p> <p>The returned labels also include bounding box information for common objects, a hierarchical taxonomy of detected labels, and the version of the label model used for detection.</p> <p>Use MaxResults parameter to limit the number of labels returned. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetlabelDetection</code> and populate the <code>NextToken</code> request parameter with the token value returned from the previous call to <code>GetLabelDetection</code>.</p>
    fn get_label_detection(
        &self,
        input: GetLabelDetectionRequest,
    ) -> RusotoFuture<GetLabelDetectionResponse, GetLabelDetectionError>;

    /// <p>Gets the path tracking results of a Amazon Rekognition Video analysis started by <a>StartPersonTracking</a>.</p> <p>The person path tracking operation is started by a call to <code>StartPersonTracking</code> which returns a job identifier (<code>JobId</code>). When the operation finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartPersonTracking</code>.</p> <p>To get the results of the person path tracking operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetPersonTracking</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartPersonTracking</code>.</p> <p> <code>GetPersonTracking</code> returns an array, <code>Persons</code>, of tracked persons and the time(s) their paths were tracked in the video. </p> <note> <p> <code>GetPersonTracking</code> only returns the default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed in the <code>Face</code> object of the following response syntax are not returned. </p> <p>For more information, see FaceDetail in the Amazon Rekognition Developer Guide.</p> </note> <p>By default, the array is sorted by the time(s) a person's path is tracked in the video. You can sort by tracked persons by specifying <code>INDEX</code> for the <code>SortBy</code> input parameter.</p> <p>Use the <code>MaxResults</code> parameter to limit the number of items returned. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetPersonTracking</code> and populate the <code>NextToken</code> request parameter with the token value returned from the previous call to <code>GetPersonTracking</code>.</p>
    fn get_person_tracking(
        &self,
        input: GetPersonTrackingRequest,
    ) -> RusotoFuture<GetPersonTrackingResponse, GetPersonTrackingError>;

    /// <p>Detects faces in the input image and adds them to the specified collection. </p> <p>Amazon Rekognition doesn't save the actual faces that are detected. Instead, the underlying detection algorithm first detects the faces in the input image. For each face, the algorithm extracts facial features into a feature vector, and stores it in the backend database. Amazon Rekognition uses feature vectors when it performs face match and search operations using the <a>SearchFaces</a> and <a>SearchFacesByImage</a> operations.</p> <p>For more information, see Adding Faces to a Collection in the Amazon Rekognition Developer Guide.</p> <p>To get the number of faces in a collection, call <a>DescribeCollection</a>. </p> <p>If you're using version 1.0 of the face detection model, <code>IndexFaces</code> indexes the 15 largest faces in the input image. Later versions of the face detection model index the 100 largest faces in the input image. </p> <p>If you're using version 4 or later of the face model, image orientation information is not returned in the <code>OrientationCorrection</code> field. </p> <p>To determine which version of the model you're using, call <a>DescribeCollection</a> and supply the collection ID. You can also get the model version from the value of <code>FaceModelVersion</code> in the response from <code>IndexFaces</code> </p> <p>For more information, see Model Versioning in the Amazon Rekognition Developer Guide.</p> <p>If you provide the optional <code>ExternalImageID</code> for the input image you provided, Amazon Rekognition associates this ID with all faces that it detects. When you call the <a>ListFaces</a> operation, the response returns the external ID. You can use this external image ID to create a client-side index to associate the faces with each image. You can then use the index to find all faces in an image.</p> <p>You can specify the maximum number of faces to index with the <code>MaxFaces</code> input parameter. This is useful when you want to index the largest faces in an image and don't want to index smaller faces, such as those belonging to people standing in the background.</p> <p>The <code>QualityFilter</code> input parameter allows you to filter out detected faces that don’t meet the required quality bar chosen by Amazon Rekognition. The quality bar is based on a variety of common use cases. By default, <code>IndexFaces</code> filters detected faces. You can also explicitly filter detected faces by specifying <code>AUTO</code> for the value of <code>QualityFilter</code>. If you do not want to filter detected faces, specify <code>NONE</code>. </p> <note> <p>To use quality filtering, you need a collection associated with version 3 of the face model. To get the version of the face model associated with a collection, call <a>DescribeCollection</a>. </p> </note> <p>Information about faces detected in an image, but not indexed, is returned in an array of <a>UnindexedFace</a> objects, <code>UnindexedFaces</code>. Faces aren't indexed for reasons such as:</p> <ul> <li> <p>The number of faces detected exceeds the value of the <code>MaxFaces</code> request parameter.</p> </li> <li> <p>The face is too small compared to the image dimensions.</p> </li> <li> <p>The face is too blurry.</p> </li> <li> <p>The image is too dark.</p> </li> <li> <p>The face has an extreme pose.</p> </li> </ul> <p>In response, the <code>IndexFaces</code> operation returns an array of metadata for all detected faces, <code>FaceRecords</code>. This includes: </p> <ul> <li> <p>The bounding box, <code>BoundingBox</code>, of the detected face. </p> </li> <li> <p>A confidence value, <code>Confidence</code>, which indicates the confidence that the bounding box contains a face.</p> </li> <li> <p>A face ID, <code>FaceId</code>, assigned by the service for each face that's detected and stored.</p> </li> <li> <p>An image ID, <code>ImageId</code>, assigned by the service for the input image.</p> </li> </ul> <p>If you request all facial attributes (by using the <code>detectionAttributes</code> parameter), Amazon Rekognition returns detailed facial attributes, such as facial landmarks (for example, location of eye and mouth) and other facial attributes like gender. If you provide the same image, specify the same collection, and use the same external ID in the <code>IndexFaces</code> operation, Amazon Rekognition doesn't save duplicate face metadata.</p> <p/> <p>The input image is passed either as base64-encoded image bytes, or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes isn't supported. The image must be formatted as a PNG or JPEG file. </p> <p>This operation requires permissions to perform the <code>rekognition:IndexFaces</code> action.</p>
    fn index_faces(
        &self,
        input: IndexFacesRequest,
    ) -> RusotoFuture<IndexFacesResponse, IndexFacesError>;

    /// <p>Returns list of collection IDs in your account. If the result is truncated, the response also provides a <code>NextToken</code> that you can use in the subsequent request to fetch the next set of collection IDs.</p> <p>For an example, see Listing Collections in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:ListCollections</code> action.</p>
    fn list_collections(
        &self,
        input: ListCollectionsRequest,
    ) -> RusotoFuture<ListCollectionsResponse, ListCollectionsError>;

    /// <p>Returns metadata for faces in the specified collection. This metadata includes information such as the bounding box coordinates, the confidence (that the bounding box contains a face), and face ID. For an example, see Listing Faces in a Collection in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:ListFaces</code> action.</p>
    fn list_faces(
        &self,
        input: ListFacesRequest,
    ) -> RusotoFuture<ListFacesResponse, ListFacesError>;

    /// <p>Gets a list of stream processors that you have created with <a>CreateStreamProcessor</a>. </p>
    fn list_stream_processors(
        &self,
        input: ListStreamProcessorsRequest,
    ) -> RusotoFuture<ListStreamProcessorsResponse, ListStreamProcessorsError>;

    /// <p>Returns an array of celebrities recognized in the input image. For more information, see Recognizing Celebrities in the Amazon Rekognition Developer Guide. </p> <p> <code>RecognizeCelebrities</code> returns the 100 largest faces in the image. It lists recognized celebrities in the <code>CelebrityFaces</code> array and unrecognized faces in the <code>UnrecognizedFaces</code> array. <code>RecognizeCelebrities</code> doesn't return celebrities whose faces aren't among the largest 100 faces in the image.</p> <p>For each celebrity recognized, <code>RecognizeCelebrities</code> returns a <code>Celebrity</code> object. The <code>Celebrity</code> object contains the celebrity name, ID, URL links to additional information, match confidence, and a <code>ComparedFace</code> object that you can use to locate the celebrity's face on the image.</p> <p>Amazon Rekognition doesn't retain information about which images a celebrity has been recognized in. Your application must store this information and use the <code>Celebrity</code> ID property as a unique identifier for the celebrity. If you don't store the celebrity name or additional information URLs returned by <code>RecognizeCelebrities</code>, you will need the ID to identify the celebrity in a call to the <a>GetCelebrityInfo</a> operation.</p> <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p> <p>For an example, see Recognizing Celebrities in an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:RecognizeCelebrities</code> operation.</p>
    fn recognize_celebrities(
        &self,
        input: RecognizeCelebritiesRequest,
    ) -> RusotoFuture<RecognizeCelebritiesResponse, RecognizeCelebritiesError>;

    /// <p>For a given input face ID, searches for matching faces in the collection the face belongs to. You get a face ID when you add a face to the collection using the <a>IndexFaces</a> operation. The operation compares the features of the input face with faces in the specified collection. </p> <note> <p>You can also search faces without indexing faces by using the <code>SearchFacesByImage</code> operation.</p> </note> <p> The operation response returns an array of faces that match, ordered by similarity score with the highest similarity first. More specifically, it is an array of metadata for each face match that is found. Along with the metadata, the response also includes a <code>confidence</code> value for each face match, indicating the confidence that the specific face matches the input face. </p> <p>For an example, see Searching for a Face Using Its Face ID in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:SearchFaces</code> action.</p>
    fn search_faces(
        &self,
        input: SearchFacesRequest,
    ) -> RusotoFuture<SearchFacesResponse, SearchFacesError>;

    /// <p>For a given input image, first detects the largest face in the image, and then searches the specified collection for matching faces. The operation compares the features of the input face with faces in the specified collection. </p> <note> <p>To search for all faces in an input image, you might first call the <a>IndexFaces</a> operation, and then use the face IDs returned in subsequent calls to the <a>SearchFaces</a> operation. </p> <p> You can also call the <code>DetectFaces</code> operation and use the bounding boxes in the response to make face crops, which then you can pass in to the <code>SearchFacesByImage</code> operation. </p> </note> <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p> <p> The response returns an array of faces that match, ordered by similarity score with the highest similarity first. More specifically, it is an array of metadata for each face match found. Along with the metadata, the response also includes a <code>similarity</code> indicating how similar the face is to the input face. In the response, the operation also returns the bounding box (and a confidence level that the bounding box contains a face) of the face that Amazon Rekognition used for the input image. </p> <p>For an example, Searching for a Face Using an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:SearchFacesByImage</code> action.</p>
    fn search_faces_by_image(
        &self,
        input: SearchFacesByImageRequest,
    ) -> RusotoFuture<SearchFacesByImageResponse, SearchFacesByImageError>;

    /// <p>Starts asynchronous recognition of celebrities in a stored video.</p> <p>Amazon Rekognition Video can detect celebrities in a video must be stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartCelebrityRecognition</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the analysis. When celebrity recognition analysis is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. To get the results of the celebrity recognition analysis, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetCelebrityRecognition</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartCelebrityRecognition</code>. </p> <p>For more information, see Recognizing Celebrities in the Amazon Rekognition Developer Guide.</p>
    fn start_celebrity_recognition(
        &self,
        input: StartCelebrityRecognitionRequest,
    ) -> RusotoFuture<StartCelebrityRecognitionResponse, StartCelebrityRecognitionError>;

    /// <p> Starts asynchronous detection of explicit or suggestive adult content in a stored video.</p> <p>Amazon Rekognition Video can moderate content in a video stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartContentModeration</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the analysis. When content moderation analysis is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>.</p> <p>To get the results of the content moderation analysis, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetContentModeration</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartContentModeration</code>. </p> <p>For more information, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p>
    fn start_content_moderation(
        &self,
        input: StartContentModerationRequest,
    ) -> RusotoFuture<StartContentModerationResponse, StartContentModerationError>;

    /// <p>Starts asynchronous detection of faces in a stored video.</p> <p>Amazon Rekognition Video can detect faces in a video stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartFaceDetection</code> returns a job identifier (<code>JobId</code>) that you use to get the results of the operation. When face detection is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. To get the results of the face detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceDetection</code>.</p> <p>For more information, see Detecting Faces in a Stored Video in the Amazon Rekognition Developer Guide.</p>
    fn start_face_detection(
        &self,
        input: StartFaceDetectionRequest,
    ) -> RusotoFuture<StartFaceDetectionResponse, StartFaceDetectionError>;

    /// <p>Starts the asynchronous search for faces in a collection that match the faces of persons detected in a stored video.</p> <p>The video must be stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartFaceSearch</code> returns a job identifier (<code>JobId</code>) which you use to get the search results once the search has completed. When searching is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. To get the search results, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceSearch</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceSearch</code>. For more information, see <a>procedure-person-search-videos</a>.</p>
    fn start_face_search(
        &self,
        input: StartFaceSearchRequest,
    ) -> RusotoFuture<StartFaceSearchResponse, StartFaceSearchError>;

    /// <p><p>Starts asynchronous detection of labels in a stored video.</p> <p>Amazon Rekognition Video can detect labels in a video. Labels are instances of real-world entities. This includes objects like flower, tree, and table; events like wedding, graduation, and birthday party; concepts like landscape, evening, and nature; and activities like a person getting out of a car or a person skiing.</p> <p>The video must be stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartLabelDetection</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the operation. When label detection is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>.</p> <p>To get the results of the label detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartLabelDetection</code>.</p> <p/></p>
    fn start_label_detection(
        &self,
        input: StartLabelDetectionRequest,
    ) -> RusotoFuture<StartLabelDetectionResponse, StartLabelDetectionError>;

    /// <p>Starts the asynchronous tracking of a person's path in a stored video.</p> <p>Amazon Rekognition Video can track the path of people in a video stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartPersonTracking</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the operation. When label detection is finished, Amazon Rekognition publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. </p> <p>To get the results of the person detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetPersonTracking</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartPersonTracking</code>.</p>
    fn start_person_tracking(
        &self,
        input: StartPersonTrackingRequest,
    ) -> RusotoFuture<StartPersonTrackingResponse, StartPersonTrackingError>;

    /// <p>Starts processing a stream processor. You create a stream processor by calling <a>CreateStreamProcessor</a>. To tell <code>StartStreamProcessor</code> which stream processor to start, use the value of the <code>Name</code> field specified in the call to <code>CreateStreamProcessor</code>.</p>
    fn start_stream_processor(
        &self,
        input: StartStreamProcessorRequest,
    ) -> RusotoFuture<StartStreamProcessorResponse, StartStreamProcessorError>;

    /// <p>Stops a running stream processor that was created by <a>CreateStreamProcessor</a>.</p>
    fn stop_stream_processor(
        &self,
        input: StopStreamProcessorRequest,
    ) -> RusotoFuture<StopStreamProcessorResponse, StopStreamProcessorError>;
}
/// A client for the Amazon Rekognition API.
#[derive(Clone)]
pub struct RekognitionClient {
    client: Client,
    region: region::Region,
}

impl RekognitionClient {
    /// Creates a client backed by the default tokio event loop.
    ///
    /// The client will use the default credentials provider and tls client.
    pub fn new(region: region::Region) -> RekognitionClient {
        RekognitionClient {
            client: Client::shared(),
            region,
        }
    }

    pub fn new_with<P, D>(
        request_dispatcher: D,
        credentials_provider: P,
        region: region::Region,
    ) -> RekognitionClient
    where
        P: ProvideAwsCredentials + Send + Sync + 'static,
        P::Future: Send,
        D: DispatchSignedRequest + Send + Sync + 'static,
        D::Future: Send,
    {
        RekognitionClient {
            client: Client::new_with(credentials_provider, request_dispatcher),
            region,
        }
    }
}

impl Rekognition for RekognitionClient {
    /// <p>Compares a face in the <i>source</i> input image with each of the 100 largest faces detected in the <i>target</i> input image. </p> <note> <p> If the source image contains multiple faces, the service detects the largest face and compares it with each face detected in the target image. </p> </note> <p>You pass the input and target images either as base64-encoded image bytes or as references to images in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes isn't supported. The image must be formatted as a PNG or JPEG file. </p> <p>In response, the operation returns an array of face matches ordered by similarity score in descending order. For each face match, the response provides a bounding box of the face, facial landmarks, pose details (pitch, role, and yaw), quality (brightness and sharpness), and confidence value (indicating the level of confidence that the bounding box contains a face). The response also provides a similarity score, which indicates how closely the faces match. </p> <note> <p>By default, only faces with a similarity score of greater than or equal to 80% are returned in the response. You can change this value by specifying the <code>SimilarityThreshold</code> parameter.</p> </note> <p> <code>CompareFaces</code> also returns an array of faces that don't match the source image. For each face, it returns a bounding box, confidence value, landmarks, pose details, and quality. The response also returns information about the face in the source image, including the bounding box of the face and confidence value.</p> <p>If the image doesn't contain Exif metadata, <code>CompareFaces</code> returns orientation information for the source and target images. Use these values to display the images with the correct image orientation.</p> <p>If no faces are detected in the source or target images, <code>CompareFaces</code> returns an <code>InvalidParameterException</code> error. </p> <note> <p> This is a stateless API operation. That is, data returned by this operation doesn't persist.</p> </note> <p>For an example, see Comparing Faces in Images in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:CompareFaces</code> action.</p>
    fn compare_faces(
        &self,
        input: CompareFacesRequest,
    ) -> RusotoFuture<CompareFacesResponse, CompareFacesError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.CompareFaces");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CompareFacesResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CompareFacesError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates a collection in an AWS Region. You can add faces to the collection using the <a>IndexFaces</a> operation. </p> <p>For example, you might create collections, one for each of your application users. A user can then index faces using the <code>IndexFaces</code> operation and persist results in a specific collection. Then, a user can search the collection for faces in the user-specific container. </p> <p>When you create a collection, it is associated with the latest version of the face model version.</p> <note> <p>Collection names are case-sensitive.</p> </note> <p>This operation requires permissions to perform the <code>rekognition:CreateCollection</code> action.</p>
    fn create_collection(
        &self,
        input: CreateCollectionRequest,
    ) -> RusotoFuture<CreateCollectionResponse, CreateCollectionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.CreateCollection");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateCollectionResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateCollectionError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates an Amazon Rekognition stream processor that you can use to detect and recognize faces in a streaming video.</p> <p>Amazon Rekognition Video is a consumer of live video from Amazon Kinesis Video Streams. Amazon Rekognition Video sends analysis results to Amazon Kinesis Data Streams.</p> <p>You provide as input a Kinesis video stream (<code>Input</code>) and a Kinesis data stream (<code>Output</code>) stream. You also specify the face recognition criteria in <code>Settings</code>. For example, the collection containing faces that you want to recognize. Use <code>Name</code> to assign an identifier for the stream processor. You use <code>Name</code> to manage the stream processor. For example, you can start processing the source video by calling <a>StartStreamProcessor</a> with the <code>Name</code> field. </p> <p>After you have finished analyzing a streaming video, use <a>StopStreamProcessor</a> to stop processing. You can delete the stream processor by calling <a>DeleteStreamProcessor</a>.</p>
    fn create_stream_processor(
        &self,
        input: CreateStreamProcessorRequest,
    ) -> RusotoFuture<CreateStreamProcessorResponse, CreateStreamProcessorError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.CreateStreamProcessor");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateStreamProcessorResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(CreateStreamProcessorError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Deletes the specified collection. Note that this operation removes all faces in the collection. For an example, see <a>delete-collection-procedure</a>.</p> <p>This operation requires permissions to perform the <code>rekognition:DeleteCollection</code> action.</p>
    fn delete_collection(
        &self,
        input: DeleteCollectionRequest,
    ) -> RusotoFuture<DeleteCollectionResponse, DeleteCollectionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DeleteCollection");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteCollectionResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteCollectionError::from_response(response))),
                )
            }
        })
    }

    /// <p>Deletes faces from a collection. You specify a collection ID and an array of face IDs to remove from the collection.</p> <p>This operation requires permissions to perform the <code>rekognition:DeleteFaces</code> action.</p>
    fn delete_faces(
        &self,
        input: DeleteFacesRequest,
    ) -> RusotoFuture<DeleteFacesResponse, DeleteFacesError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DeleteFaces");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteFacesResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteFacesError::from_response(response))),
                )
            }
        })
    }

    /// <p>Deletes the stream processor identified by <code>Name</code>. You assign the value for <code>Name</code> when you create the stream processor with <a>CreateStreamProcessor</a>. You might not be able to use the same name for a stream processor for a few seconds after calling <code>DeleteStreamProcessor</code>.</p>
    fn delete_stream_processor(
        &self,
        input: DeleteStreamProcessorRequest,
    ) -> RusotoFuture<DeleteStreamProcessorResponse, DeleteStreamProcessorError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DeleteStreamProcessor");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteStreamProcessorResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DeleteStreamProcessorError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Describes the specified collection. You can use <code>DescribeCollection</code> to get information, such as the number of faces indexed into a collection and the version of the model used by the collection for face detection.</p> <p>For more information, see Describing a Collection in the Amazon Rekognition Developer Guide.</p>
    fn describe_collection(
        &self,
        input: DescribeCollectionRequest,
    ) -> RusotoFuture<DescribeCollectionResponse, DescribeCollectionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DescribeCollection");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeCollectionResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DescribeCollectionError::from_response(response))),
                )
            }
        })
    }

    /// <p>Provides information about a stream processor created by <a>CreateStreamProcessor</a>. You can get information about the input and output streams, the input parameters for the face recognition being performed, and the current status of the stream processor.</p>
    fn describe_stream_processor(
        &self,
        input: DescribeStreamProcessorRequest,
    ) -> RusotoFuture<DescribeStreamProcessorResponse, DescribeStreamProcessorError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DescribeStreamProcessor");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeStreamProcessorResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(DescribeStreamProcessorError::from_response(response))
                }))
            }
        })
    }

    /// <p>Detects faces within an image that is provided as input.</p> <p> <code>DetectFaces</code> detects the 100 largest faces in the image. For each face detected, the operation returns face details. These details include a bounding box of the face, a confidence value (that the bounding box contains a face), and a fixed set of attributes such as facial landmarks (for example, coordinates of eye and mouth), gender, presence of beard, sunglasses, and so on. </p> <p>The face-detection algorithm is most effective on frontal faces. For non-frontal or obscured faces, the algorithm might not detect the faces or might detect faces with lower confidence. </p> <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p> <note> <p>This is a stateless API operation. That is, the operation does not persist any data.</p> </note> <p>This operation requires permissions to perform the <code>rekognition:DetectFaces</code> action. </p>
    fn detect_faces(
        &self,
        input: DetectFacesRequest,
    ) -> RusotoFuture<DetectFacesResponse, DetectFacesError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DetectFaces");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DetectFacesResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DetectFacesError::from_response(response))),
                )
            }
        })
    }

    /// <p>Detects instances of real-world entities within an image (JPEG or PNG) provided as input. This includes objects like flower, tree, and table; events like wedding, graduation, and birthday party; and concepts like landscape, evening, and nature. </p> <p>For an example, see Analyzing Images Stored in an Amazon S3 Bucket in the Amazon Rekognition Developer Guide.</p> <note> <p> <code>DetectLabels</code> does not support the detection of activities. However, activity detection is supported for label detection in videos. For more information, see StartLabelDetection in the Amazon Rekognition Developer Guide.</p> </note> <p>You pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p> <p> For each object, scene, and concept the API returns one or more labels. Each label provides the object name, and the level of confidence that the image contains the object. For example, suppose the input image has a lighthouse, the sea, and a rock. The response includes all three labels, one for each object. </p> <p> <code>{Name: lighthouse, Confidence: 98.4629}</code> </p> <p> <code>{Name: rock,Confidence: 79.2097}</code> </p> <p> <code> {Name: sea,Confidence: 75.061}</code> </p> <p>In the preceding example, the operation returns one label for each of the three objects. The operation can also return multiple labels for the same object in the image. For example, if the input image shows a flower (for example, a tulip), the operation might return the following three labels. </p> <p> <code>{Name: flower,Confidence: 99.0562}</code> </p> <p> <code>{Name: plant,Confidence: 99.0562}</code> </p> <p> <code>{Name: tulip,Confidence: 99.0562}</code> </p> <p>In this example, the detection algorithm more precisely identifies the flower as a tulip.</p> <p>In response, the API returns an array of labels. In addition, the response also includes the orientation correction. Optionally, you can specify <code>MinConfidence</code> to control the confidence threshold for the labels returned. The default is 55%. You can also add the <code>MaxLabels</code> parameter to limit the number of labels returned. </p> <note> <p>If the object detected is a person, the operation doesn't provide the same facial details that the <a>DetectFaces</a> operation provides.</p> </note> <p> <code>DetectLabels</code> returns bounding boxes for instances of common object labels in an array of <a>Instance</a> objects. An <code>Instance</code> object contains a <a>BoundingBox</a> object, for the location of the label on the image. It also includes the confidence by which the bounding box was detected.</p> <p> <code>DetectLabels</code> also returns a hierarchical taxonomy of detected labels. For example, a detected car might be assigned the label <i>car</i>. The label <i>car</i> has two parent labels: <i>Vehicle</i> (its parent) and <i>Transportation</i> (its grandparent). The response returns the entire list of ancestors for a label. Each ancestor is a unique label in the response. In the previous example, <i>Car</i>, <i>Vehicle</i>, and <i>Transportation</i> are returned as unique labels in the response. </p> <p>This is a stateless API operation. That is, the operation does not persist any data.</p> <p>This operation requires permissions to perform the <code>rekognition:DetectLabels</code> action. </p>
    fn detect_labels(
        &self,
        input: DetectLabelsRequest,
    ) -> RusotoFuture<DetectLabelsResponse, DetectLabelsError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DetectLabels");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DetectLabelsResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DetectLabelsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Detects explicit or suggestive adult content in a specified JPEG or PNG format image. Use <code>DetectModerationLabels</code> to moderate images depending on your requirements. For example, you might want to filter images that contain nudity, but not images containing suggestive content.</p> <p>To filter images, use the labels returned by <code>DetectModerationLabels</code> to determine which types of content are appropriate.</p> <p>For information about moderation labels, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p> <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p>
    fn detect_moderation_labels(
        &self,
        input: DetectModerationLabelsRequest,
    ) -> RusotoFuture<DetectModerationLabelsResponse, DetectModerationLabelsError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DetectModerationLabels");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DetectModerationLabelsResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DetectModerationLabelsError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Detects text in the input image and converts it into machine-readable text.</p> <p>Pass the input image as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, you must pass it as a reference to an image in an Amazon S3 bucket. For the AWS CLI, passing image bytes is not supported. The image must be either a .png or .jpeg formatted file. </p> <p>The <code>DetectText</code> operation returns text in an array of <a>TextDetection</a> elements, <code>TextDetections</code>. Each <code>TextDetection</code> element provides information about a single word or line of text that was detected in the image. </p> <p>A word is one or more ISO basic latin script characters that are not separated by spaces. <code>DetectText</code> can detect up to 50 words in an image.</p> <p>A line is a string of equally spaced words. A line isn't necessarily a complete sentence. For example, a driver's license number is detected as a line. A line ends when there is no aligned text after it. Also, a line ends when there is a large gap between words, relative to the length of the words. This means, depending on the gap between words, Amazon Rekognition may detect multiple lines in text aligned in the same direction. Periods don't represent the end of a line. If a sentence spans multiple lines, the <code>DetectText</code> operation returns multiple lines.</p> <p>To determine whether a <code>TextDetection</code> element is a line of text or a word, use the <code>TextDetection</code> object <code>Type</code> field. </p> <p>To be detected, text must be within +/- 90 degrees orientation of the horizontal axis.</p> <p>For more information, see DetectText in the Amazon Rekognition Developer Guide.</p>
    fn detect_text(
        &self,
        input: DetectTextRequest,
    ) -> RusotoFuture<DetectTextResponse, DetectTextError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.DetectText");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DetectTextResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DetectTextError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets the name and additional information about a celebrity based on his or her Amazon Rekognition ID. The additional information is returned as an array of URLs. If there is no additional information about the celebrity, this list is empty.</p> <p>For more information, see Recognizing Celebrities in an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:GetCelebrityInfo</code> action. </p>
    fn get_celebrity_info(
        &self,
        input: GetCelebrityInfoRequest,
    ) -> RusotoFuture<GetCelebrityInfoResponse, GetCelebrityInfoError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.GetCelebrityInfo");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetCelebrityInfoResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetCelebrityInfoError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets the celebrity recognition results for a Amazon Rekognition Video analysis started by <a>StartCelebrityRecognition</a>.</p> <p>Celebrity recognition in a video is an asynchronous operation. Analysis is started by a call to <a>StartCelebrityRecognition</a> which returns a job identifier (<code>JobId</code>). When the celebrity recognition operation finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartCelebrityRecognition</code>. To get the results of the celebrity recognition analysis, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <code>GetCelebrityDetection</code> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartCelebrityDetection</code>. </p> <p>For more information, see Working With Stored Videos in the Amazon Rekognition Developer Guide.</p> <p> <code>GetCelebrityRecognition</code> returns detected celebrities and the time(s) they are detected in an array (<code>Celebrities</code>) of <a>CelebrityRecognition</a> objects. Each <code>CelebrityRecognition</code> contains information about the celebrity in a <a>CelebrityDetail</a> object and the time, <code>Timestamp</code>, the celebrity was detected. </p> <note> <p> <code>GetCelebrityRecognition</code> only returns the default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed in the <code>Face</code> object of the following response syntax are not returned. For more information, see FaceDetail in the Amazon Rekognition Developer Guide. </p> </note> <p>By default, the <code>Celebrities</code> array is sorted by time (milliseconds from the start of the video). You can also sort the array by celebrity by specifying the value <code>ID</code> in the <code>SortBy</code> input parameter.</p> <p>The <code>CelebrityDetail</code> object includes the celebrity identifer and additional information urls. If you don't store the additional information urls, you can get them later by calling <a>GetCelebrityInfo</a> with the celebrity identifer.</p> <p>No information is returned for faces not recognized as celebrities.</p> <p>Use MaxResults parameter to limit the number of labels returned. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetCelebrityDetection</code> and populate the <code>NextToken</code> request parameter with the token value returned from the previous call to <code>GetCelebrityRecognition</code>.</p>
    fn get_celebrity_recognition(
        &self,
        input: GetCelebrityRecognitionRequest,
    ) -> RusotoFuture<GetCelebrityRecognitionResponse, GetCelebrityRecognitionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.GetCelebrityRecognition");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetCelebrityRecognitionResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(GetCelebrityRecognitionError::from_response(response))
                }))
            }
        })
    }

    /// <p>Gets the content moderation analysis results for a Amazon Rekognition Video analysis started by <a>StartContentModeration</a>.</p> <p>Content moderation analysis of a video is an asynchronous operation. You start analysis by calling <a>StartContentModeration</a> which returns a job identifier (<code>JobId</code>). When analysis finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartContentModeration</code>. To get the results of the content moderation analysis, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <code>GetContentModeration</code> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartContentModeration</code>. </p> <p>For more information, see Working with Stored Videos in the Amazon Rekognition Devlopers Guide.</p> <p> <code>GetContentModeration</code> returns detected content moderation labels, and the time they are detected, in an array, <code>ModerationLabels</code>, of <a>ContentModerationDetection</a> objects. </p> <p>By default, the moderated labels are returned sorted by time, in milliseconds from the start of the video. You can also sort them by moderated label by specifying <code>NAME</code> for the <code>SortBy</code> input parameter. </p> <p>Since video analysis can return a large number of results, use the <code>MaxResults</code> parameter to limit the number of labels returned in a single call to <code>GetContentModeration</code>. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetContentModeration</code> and populate the <code>NextToken</code> request parameter with the value of <code>NextToken</code> returned from the previous call to <code>GetContentModeration</code>.</p> <p>For more information, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p>
    fn get_content_moderation(
        &self,
        input: GetContentModerationRequest,
    ) -> RusotoFuture<GetContentModerationResponse, GetContentModerationError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.GetContentModeration");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetContentModerationResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(GetContentModerationError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Gets face detection results for a Amazon Rekognition Video analysis started by <a>StartFaceDetection</a>.</p> <p>Face detection with Amazon Rekognition Video is an asynchronous operation. You start face detection by calling <a>StartFaceDetection</a> which returns a job identifier (<code>JobId</code>). When the face detection operation finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartFaceDetection</code>. To get the results of the face detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceDetection</code>.</p> <p> <code>GetFaceDetection</code> returns an array of detected faces (<code>Faces</code>) sorted by the time the faces were detected. </p> <p>Use MaxResults parameter to limit the number of labels returned. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetFaceDetection</code> and populate the <code>NextToken</code> request parameter with the token value returned from the previous call to <code>GetFaceDetection</code>.</p>
    fn get_face_detection(
        &self,
        input: GetFaceDetectionRequest,
    ) -> RusotoFuture<GetFaceDetectionResponse, GetFaceDetectionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.GetFaceDetection");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetFaceDetectionResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetFaceDetectionError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets the face search results for Amazon Rekognition Video face search started by <a>StartFaceSearch</a>. The search returns faces in a collection that match the faces of persons detected in a video. It also includes the time(s) that faces are matched in the video.</p> <p>Face search in a video is an asynchronous operation. You start face search by calling to <a>StartFaceSearch</a> which returns a job identifier (<code>JobId</code>). When the search operation finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartFaceSearch</code>. To get the search results, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <code>GetFaceSearch</code> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceSearch</code>.</p> <p>For more information, see Searching Faces in a Collection in the Amazon Rekognition Developer Guide.</p> <p>The search results are retured in an array, <code>Persons</code>, of <a>PersonMatch</a> objects. Each<code>PersonMatch</code> element contains details about the matching faces in the input collection, person information (facial attributes, bounding boxes, and person identifer) for the matched person, and the time the person was matched in the video.</p> <note> <p> <code>GetFaceSearch</code> only returns the default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed in the <code>Face</code> object of the following response syntax are not returned. For more information, see FaceDetail in the Amazon Rekognition Developer Guide. </p> </note> <p>By default, the <code>Persons</code> array is sorted by the time, in milliseconds from the start of the video, persons are matched. You can also sort by persons by specifying <code>INDEX</code> for the <code>SORTBY</code> input parameter.</p>
    fn get_face_search(
        &self,
        input: GetFaceSearchRequest,
    ) -> RusotoFuture<GetFaceSearchResponse, GetFaceSearchError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.GetFaceSearch");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetFaceSearchResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetFaceSearchError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets the label detection results of a Amazon Rekognition Video analysis started by <a>StartLabelDetection</a>. </p> <p>The label detection operation is started by a call to <a>StartLabelDetection</a> which returns a job identifier (<code>JobId</code>). When the label detection operation finishes, Amazon Rekognition publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartlabelDetection</code>. To get the results of the label detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartLabelDetection</code>.</p> <p> <code>GetLabelDetection</code> returns an array of detected labels (<code>Labels</code>) sorted by the time the labels were detected. You can also sort by the label name by specifying <code>NAME</code> for the <code>SortBy</code> input parameter.</p> <p>The labels returned include the label name, the percentage confidence in the accuracy of the detected label, and the time the label was detected in the video.</p> <p>The returned labels also include bounding box information for common objects, a hierarchical taxonomy of detected labels, and the version of the label model used for detection.</p> <p>Use MaxResults parameter to limit the number of labels returned. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetlabelDetection</code> and populate the <code>NextToken</code> request parameter with the token value returned from the previous call to <code>GetLabelDetection</code>.</p>
    fn get_label_detection(
        &self,
        input: GetLabelDetectionRequest,
    ) -> RusotoFuture<GetLabelDetectionResponse, GetLabelDetectionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.GetLabelDetection");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetLabelDetectionResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetLabelDetectionError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets the path tracking results of a Amazon Rekognition Video analysis started by <a>StartPersonTracking</a>.</p> <p>The person path tracking operation is started by a call to <code>StartPersonTracking</code> which returns a job identifier (<code>JobId</code>). When the operation finishes, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic registered in the initial call to <code>StartPersonTracking</code>.</p> <p>To get the results of the person path tracking operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetPersonTracking</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartPersonTracking</code>.</p> <p> <code>GetPersonTracking</code> returns an array, <code>Persons</code>, of tracked persons and the time(s) their paths were tracked in the video. </p> <note> <p> <code>GetPersonTracking</code> only returns the default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed in the <code>Face</code> object of the following response syntax are not returned. </p> <p>For more information, see FaceDetail in the Amazon Rekognition Developer Guide.</p> </note> <p>By default, the array is sorted by the time(s) a person's path is tracked in the video. You can sort by tracked persons by specifying <code>INDEX</code> for the <code>SortBy</code> input parameter.</p> <p>Use the <code>MaxResults</code> parameter to limit the number of items returned. If there are more results than specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the operation response contains a pagination token for getting the next set of results. To get the next page of results, call <code>GetPersonTracking</code> and populate the <code>NextToken</code> request parameter with the token value returned from the previous call to <code>GetPersonTracking</code>.</p>
    fn get_person_tracking(
        &self,
        input: GetPersonTrackingRequest,
    ) -> RusotoFuture<GetPersonTrackingResponse, GetPersonTrackingError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.GetPersonTracking");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetPersonTrackingResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(GetPersonTrackingError::from_response(response))),
                )
            }
        })
    }

    /// <p>Detects faces in the input image and adds them to the specified collection. </p> <p>Amazon Rekognition doesn't save the actual faces that are detected. Instead, the underlying detection algorithm first detects the faces in the input image. For each face, the algorithm extracts facial features into a feature vector, and stores it in the backend database. Amazon Rekognition uses feature vectors when it performs face match and search operations using the <a>SearchFaces</a> and <a>SearchFacesByImage</a> operations.</p> <p>For more information, see Adding Faces to a Collection in the Amazon Rekognition Developer Guide.</p> <p>To get the number of faces in a collection, call <a>DescribeCollection</a>. </p> <p>If you're using version 1.0 of the face detection model, <code>IndexFaces</code> indexes the 15 largest faces in the input image. Later versions of the face detection model index the 100 largest faces in the input image. </p> <p>If you're using version 4 or later of the face model, image orientation information is not returned in the <code>OrientationCorrection</code> field. </p> <p>To determine which version of the model you're using, call <a>DescribeCollection</a> and supply the collection ID. You can also get the model version from the value of <code>FaceModelVersion</code> in the response from <code>IndexFaces</code> </p> <p>For more information, see Model Versioning in the Amazon Rekognition Developer Guide.</p> <p>If you provide the optional <code>ExternalImageID</code> for the input image you provided, Amazon Rekognition associates this ID with all faces that it detects. When you call the <a>ListFaces</a> operation, the response returns the external ID. You can use this external image ID to create a client-side index to associate the faces with each image. You can then use the index to find all faces in an image.</p> <p>You can specify the maximum number of faces to index with the <code>MaxFaces</code> input parameter. This is useful when you want to index the largest faces in an image and don't want to index smaller faces, such as those belonging to people standing in the background.</p> <p>The <code>QualityFilter</code> input parameter allows you to filter out detected faces that don’t meet the required quality bar chosen by Amazon Rekognition. The quality bar is based on a variety of common use cases. By default, <code>IndexFaces</code> filters detected faces. You can also explicitly filter detected faces by specifying <code>AUTO</code> for the value of <code>QualityFilter</code>. If you do not want to filter detected faces, specify <code>NONE</code>. </p> <note> <p>To use quality filtering, you need a collection associated with version 3 of the face model. To get the version of the face model associated with a collection, call <a>DescribeCollection</a>. </p> </note> <p>Information about faces detected in an image, but not indexed, is returned in an array of <a>UnindexedFace</a> objects, <code>UnindexedFaces</code>. Faces aren't indexed for reasons such as:</p> <ul> <li> <p>The number of faces detected exceeds the value of the <code>MaxFaces</code> request parameter.</p> </li> <li> <p>The face is too small compared to the image dimensions.</p> </li> <li> <p>The face is too blurry.</p> </li> <li> <p>The image is too dark.</p> </li> <li> <p>The face has an extreme pose.</p> </li> </ul> <p>In response, the <code>IndexFaces</code> operation returns an array of metadata for all detected faces, <code>FaceRecords</code>. This includes: </p> <ul> <li> <p>The bounding box, <code>BoundingBox</code>, of the detected face. </p> </li> <li> <p>A confidence value, <code>Confidence</code>, which indicates the confidence that the bounding box contains a face.</p> </li> <li> <p>A face ID, <code>FaceId</code>, assigned by the service for each face that's detected and stored.</p> </li> <li> <p>An image ID, <code>ImageId</code>, assigned by the service for the input image.</p> </li> </ul> <p>If you request all facial attributes (by using the <code>detectionAttributes</code> parameter), Amazon Rekognition returns detailed facial attributes, such as facial landmarks (for example, location of eye and mouth) and other facial attributes like gender. If you provide the same image, specify the same collection, and use the same external ID in the <code>IndexFaces</code> operation, Amazon Rekognition doesn't save duplicate face metadata.</p> <p/> <p>The input image is passed either as base64-encoded image bytes, or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes isn't supported. The image must be formatted as a PNG or JPEG file. </p> <p>This operation requires permissions to perform the <code>rekognition:IndexFaces</code> action.</p>
    fn index_faces(
        &self,
        input: IndexFacesRequest,
    ) -> RusotoFuture<IndexFacesResponse, IndexFacesError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.IndexFaces");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<IndexFacesResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(IndexFacesError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns list of collection IDs in your account. If the result is truncated, the response also provides a <code>NextToken</code> that you can use in the subsequent request to fetch the next set of collection IDs.</p> <p>For an example, see Listing Collections in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:ListCollections</code> action.</p>
    fn list_collections(
        &self,
        input: ListCollectionsRequest,
    ) -> RusotoFuture<ListCollectionsResponse, ListCollectionsError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.ListCollections");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListCollectionsResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListCollectionsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns metadata for faces in the specified collection. This metadata includes information such as the bounding box coordinates, the confidence (that the bounding box contains a face), and face ID. For an example, see Listing Faces in a Collection in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:ListFaces</code> action.</p>
    fn list_faces(
        &self,
        input: ListFacesRequest,
    ) -> RusotoFuture<ListFacesResponse, ListFacesError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.ListFaces");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListFacesResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListFacesError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets a list of stream processors that you have created with <a>CreateStreamProcessor</a>. </p>
    fn list_stream_processors(
        &self,
        input: ListStreamProcessorsRequest,
    ) -> RusotoFuture<ListStreamProcessorsResponse, ListStreamProcessorsError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.ListStreamProcessors");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListStreamProcessorsResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(ListStreamProcessorsError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Returns an array of celebrities recognized in the input image. For more information, see Recognizing Celebrities in the Amazon Rekognition Developer Guide. </p> <p> <code>RecognizeCelebrities</code> returns the 100 largest faces in the image. It lists recognized celebrities in the <code>CelebrityFaces</code> array and unrecognized faces in the <code>UnrecognizedFaces</code> array. <code>RecognizeCelebrities</code> doesn't return celebrities whose faces aren't among the largest 100 faces in the image.</p> <p>For each celebrity recognized, <code>RecognizeCelebrities</code> returns a <code>Celebrity</code> object. The <code>Celebrity</code> object contains the celebrity name, ID, URL links to additional information, match confidence, and a <code>ComparedFace</code> object that you can use to locate the celebrity's face on the image.</p> <p>Amazon Rekognition doesn't retain information about which images a celebrity has been recognized in. Your application must store this information and use the <code>Celebrity</code> ID property as a unique identifier for the celebrity. If you don't store the celebrity name or additional information URLs returned by <code>RecognizeCelebrities</code>, you will need the ID to identify the celebrity in a call to the <a>GetCelebrityInfo</a> operation.</p> <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p> <p>For an example, see Recognizing Celebrities in an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:RecognizeCelebrities</code> operation.</p>
    fn recognize_celebrities(
        &self,
        input: RecognizeCelebritiesRequest,
    ) -> RusotoFuture<RecognizeCelebritiesResponse, RecognizeCelebritiesError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.RecognizeCelebrities");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<RecognizeCelebritiesResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(RecognizeCelebritiesError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>For a given input face ID, searches for matching faces in the collection the face belongs to. You get a face ID when you add a face to the collection using the <a>IndexFaces</a> operation. The operation compares the features of the input face with faces in the specified collection. </p> <note> <p>You can also search faces without indexing faces by using the <code>SearchFacesByImage</code> operation.</p> </note> <p> The operation response returns an array of faces that match, ordered by similarity score with the highest similarity first. More specifically, it is an array of metadata for each face match that is found. Along with the metadata, the response also includes a <code>confidence</code> value for each face match, indicating the confidence that the specific face matches the input face. </p> <p>For an example, see Searching for a Face Using Its Face ID in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:SearchFaces</code> action.</p>
    fn search_faces(
        &self,
        input: SearchFacesRequest,
    ) -> RusotoFuture<SearchFacesResponse, SearchFacesError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.SearchFaces");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<SearchFacesResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(SearchFacesError::from_response(response))),
                )
            }
        })
    }

    /// <p>For a given input image, first detects the largest face in the image, and then searches the specified collection for matching faces. The operation compares the features of the input face with faces in the specified collection. </p> <note> <p>To search for all faces in an input image, you might first call the <a>IndexFaces</a> operation, and then use the face IDs returned in subsequent calls to the <a>SearchFaces</a> operation. </p> <p> You can also call the <code>DetectFaces</code> operation and use the bounding boxes in the response to make face crops, which then you can pass in to the <code>SearchFacesByImage</code> operation. </p> </note> <p>You pass the input image either as base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations, passing image bytes is not supported. The image must be either a PNG or JPEG formatted file. </p> <p> The response returns an array of faces that match, ordered by similarity score with the highest similarity first. More specifically, it is an array of metadata for each face match found. Along with the metadata, the response also includes a <code>similarity</code> indicating how similar the face is to the input face. In the response, the operation also returns the bounding box (and a confidence level that the bounding box contains a face) of the face that Amazon Rekognition used for the input image. </p> <p>For an example, Searching for a Face Using an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions to perform the <code>rekognition:SearchFacesByImage</code> action.</p>
    fn search_faces_by_image(
        &self,
        input: SearchFacesByImageRequest,
    ) -> RusotoFuture<SearchFacesByImageResponse, SearchFacesByImageError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.SearchFacesByImage");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<SearchFacesByImageResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(SearchFacesByImageError::from_response(response))),
                )
            }
        })
    }

    /// <p>Starts asynchronous recognition of celebrities in a stored video.</p> <p>Amazon Rekognition Video can detect celebrities in a video must be stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartCelebrityRecognition</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the analysis. When celebrity recognition analysis is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. To get the results of the celebrity recognition analysis, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetCelebrityRecognition</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartCelebrityRecognition</code>. </p> <p>For more information, see Recognizing Celebrities in the Amazon Rekognition Developer Guide.</p>
    fn start_celebrity_recognition(
        &self,
        input: StartCelebrityRecognitionRequest,
    ) -> RusotoFuture<StartCelebrityRecognitionResponse, StartCelebrityRecognitionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "RekognitionService.StartCelebrityRecognition",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<StartCelebrityRecognitionResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(StartCelebrityRecognitionError::from_response(response))
                }))
            }
        })
    }

    /// <p> Starts asynchronous detection of explicit or suggestive adult content in a stored video.</p> <p>Amazon Rekognition Video can moderate content in a video stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartContentModeration</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the analysis. When content moderation analysis is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>.</p> <p>To get the results of the content moderation analysis, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetContentModeration</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartContentModeration</code>. </p> <p>For more information, see Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p>
    fn start_content_moderation(
        &self,
        input: StartContentModerationRequest,
    ) -> RusotoFuture<StartContentModerationResponse, StartContentModerationError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.StartContentModeration");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<StartContentModerationResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(StartContentModerationError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Starts asynchronous detection of faces in a stored video.</p> <p>Amazon Rekognition Video can detect faces in a video stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartFaceDetection</code> returns a job identifier (<code>JobId</code>) that you use to get the results of the operation. When face detection is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. To get the results of the face detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceDetection</code>.</p> <p>For more information, see Detecting Faces in a Stored Video in the Amazon Rekognition Developer Guide.</p>
    fn start_face_detection(
        &self,
        input: StartFaceDetectionRequest,
    ) -> RusotoFuture<StartFaceDetectionResponse, StartFaceDetectionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.StartFaceDetection");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<StartFaceDetectionResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(StartFaceDetectionError::from_response(response))),
                )
            }
        })
    }

    /// <p>Starts the asynchronous search for faces in a collection that match the faces of persons detected in a stored video.</p> <p>The video must be stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartFaceSearch</code> returns a job identifier (<code>JobId</code>) which you use to get the search results once the search has completed. When searching is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. To get the search results, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceSearch</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartFaceSearch</code>. For more information, see <a>procedure-person-search-videos</a>.</p>
    fn start_face_search(
        &self,
        input: StartFaceSearchRequest,
    ) -> RusotoFuture<StartFaceSearchResponse, StartFaceSearchError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.StartFaceSearch");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<StartFaceSearchResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(StartFaceSearchError::from_response(response))),
                )
            }
        })
    }

    /// <p><p>Starts asynchronous detection of labels in a stored video.</p> <p>Amazon Rekognition Video can detect labels in a video. Labels are instances of real-world entities. This includes objects like flower, tree, and table; events like wedding, graduation, and birthday party; concepts like landscape, evening, and nature; and activities like a person getting out of a car or a person skiing.</p> <p>The video must be stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartLabelDetection</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the operation. When label detection is finished, Amazon Rekognition Video publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>.</p> <p>To get the results of the label detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartLabelDetection</code>.</p> <p/></p>
    fn start_label_detection(
        &self,
        input: StartLabelDetectionRequest,
    ) -> RusotoFuture<StartLabelDetectionResponse, StartLabelDetectionError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.StartLabelDetection");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<StartLabelDetectionResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(StartLabelDetectionError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Starts the asynchronous tracking of a person's path in a stored video.</p> <p>Amazon Rekognition Video can track the path of people in a video stored in an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the video. <code>StartPersonTracking</code> returns a job identifier (<code>JobId</code>) which you use to get the results of the operation. When label detection is finished, Amazon Rekognition publishes a completion status to the Amazon Simple Notification Service topic that you specify in <code>NotificationChannel</code>. </p> <p>To get the results of the person detection operation, first check that the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetPersonTracking</a> and pass the job identifier (<code>JobId</code>) from the initial call to <code>StartPersonTracking</code>.</p>
    fn start_person_tracking(
        &self,
        input: StartPersonTrackingRequest,
    ) -> RusotoFuture<StartPersonTrackingResponse, StartPersonTrackingError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.StartPersonTracking");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<StartPersonTrackingResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(StartPersonTrackingError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Starts processing a stream processor. You create a stream processor by calling <a>CreateStreamProcessor</a>. To tell <code>StartStreamProcessor</code> which stream processor to start, use the value of the <code>Name</code> field specified in the call to <code>CreateStreamProcessor</code>.</p>
    fn start_stream_processor(
        &self,
        input: StartStreamProcessorRequest,
    ) -> RusotoFuture<StartStreamProcessorResponse, StartStreamProcessorError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.StartStreamProcessor");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<StartStreamProcessorResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(StartStreamProcessorError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Stops a running stream processor that was created by <a>CreateStreamProcessor</a>.</p>
    fn stop_stream_processor(
        &self,
        input: StopStreamProcessorRequest,
    ) -> RusotoFuture<StopStreamProcessorResponse, StopStreamProcessorError> {
        let mut request = SignedRequest::new("POST", "rekognition", &self.region, "/");

        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "RekognitionService.StopStreamProcessor");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<StopStreamProcessorResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(StopStreamProcessorError::from_response(response))
                    }),
                )
            }
        })
    }
}