1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415
// ================================================================= // // * WARNING * // // This file is generated! // // Changes made to this file will be overwritten. If changes are // required to the generated code, the service_crategen project // must be updated to generate the changes. // // ================================================================= use std::error::Error; use std::fmt; #[allow(warnings)] use futures::future; use futures::Future; use rusoto_core::credential::ProvideAwsCredentials; use rusoto_core::region; use rusoto_core::request::{BufferedHttpResponse, DispatchSignedRequest}; use rusoto_core::{Client, RusotoError, RusotoFuture}; use rusoto_core::proto; use rusoto_core::signature::SignedRequest; use serde_json; #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct AddTagsInput { /// <p>The Amazon Resource Name (ARN) of the resource that you want to tag.</p> #[serde(rename = "ResourceArn")] pub resource_arn: String, /// <p>An array of <code>Tag</code> objects. Each tag is a key-value pair. Only the <code>key</code> parameter is required. If you don't specify a value, Amazon SageMaker sets the value to an empty string. </p> #[serde(rename = "Tags")] pub tags: Vec<Tag>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct AddTagsOutput { /// <p>A list of tags associated with the Amazon SageMaker resource.</p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, } /// <p>Specifies the training algorithm to use in a <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html">CreateTrainingJob</a> request.</p> <p>For more information about algorithms provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about using your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>. </p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct AlgorithmSpecification { /// <p>The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for <code>TrainingImage</code>.</p> #[serde(rename = "AlgorithmName")] #[serde(skip_serializing_if = "Option::is_none")] pub algorithm_name: Option<String>, /// <p>A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.</p> #[serde(rename = "MetricDefinitions")] #[serde(skip_serializing_if = "Option::is_none")] pub metric_definitions: Option<Vec<MetricDefinition>>, /// <p>The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Algorithms Provided by Amazon SageMaker: Common Parameters</a>. Amazon SageMaker supports both <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code> image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p> #[serde(rename = "TrainingImage")] #[serde(skip_serializing_if = "Option::is_none")] pub training_image: Option<String>, /// <p>The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. If an algorithm supports the <code>File</code> input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the <code>Pipe</code> input mode, Amazon SageMaker streams data directly from S3 to the container. </p> <p> In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any. </p> <p> For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training. </p> #[serde(rename = "TrainingInputMode")] pub training_input_mode: String, } /// <p>Specifies the validation and image scan statuses of the algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct AlgorithmStatusDetails { /// <p>The status of the scan of the algorithm's Docker image container.</p> #[serde(rename = "ImageScanStatuses")] #[serde(skip_serializing_if = "Option::is_none")] pub image_scan_statuses: Option<Vec<AlgorithmStatusItem>>, /// <p>The status of algorithm validation.</p> #[serde(rename = "ValidationStatuses")] #[serde(skip_serializing_if = "Option::is_none")] pub validation_statuses: Option<Vec<AlgorithmStatusItem>>, } /// <p>Represents the overall status of an algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct AlgorithmStatusItem { /// <p>if the overall status is <code>Failed</code>, the reason for the failure.</p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>The name of the algorithm for which the overall status is being reported.</p> #[serde(rename = "Name")] pub name: String, /// <p>The current status.</p> #[serde(rename = "Status")] pub status: String, } /// <p>Provides summary information about an algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct AlgorithmSummary { /// <p>The Amazon Resource Name (ARN) of the algorithm.</p> #[serde(rename = "AlgorithmArn")] pub algorithm_arn: String, /// <p>A brief description of the algorithm.</p> #[serde(rename = "AlgorithmDescription")] #[serde(skip_serializing_if = "Option::is_none")] pub algorithm_description: Option<String>, /// <p>The name of the algorithm that is described by the summary.</p> #[serde(rename = "AlgorithmName")] pub algorithm_name: String, /// <p>The overall status of the algorithm.</p> #[serde(rename = "AlgorithmStatus")] pub algorithm_status: String, /// <p>A timestamp that shows when the algorithm was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, } /// <p>Defines a training job and a batch transform job that Amazon SageMaker runs to validate your algorithm.</p> <p>The data provided in the validation profile is made available to your buyers on AWS Marketplace.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct AlgorithmValidationProfile { /// <p>The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p> #[serde(rename = "ProfileName")] pub profile_name: String, /// <p>The <code>TrainingJobDefinition</code> object that describes the training job that Amazon SageMaker runs to validate your algorithm.</p> #[serde(rename = "TrainingJobDefinition")] pub training_job_definition: TrainingJobDefinition, /// <p>The <code>TransformJobDefinition</code> object that describes the transform job that Amazon SageMaker runs to validate your algorithm.</p> #[serde(rename = "TransformJobDefinition")] #[serde(skip_serializing_if = "Option::is_none")] pub transform_job_definition: Option<TransformJobDefinition>, } /// <p>Specifies configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct AlgorithmValidationSpecification { /// <p>An array of <code>AlgorithmValidationProfile</code> objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm.</p> #[serde(rename = "ValidationProfiles")] pub validation_profiles: Vec<AlgorithmValidationProfile>, /// <p>The IAM roles that Amazon SageMaker uses to run the training jobs.</p> #[serde(rename = "ValidationRole")] pub validation_role: String, } /// <p>Configures how labels are consolidated across human workers.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct AnnotationConsolidationConfig { /// <p>The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation.</p> <p>For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:</p> <ul> <li> <p> <i>Bounding box</i> - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.</p> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox</code> </p> </li> <li> <p> <i>Image classification</i> - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.</p> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass</code> </p> </li> <li> <p> <i>Semantic segmentation</i> - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.</p> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation</code> </p> </li> <li> <p> <i>Text classification</i> - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.</p> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass</code> </p> </li> </ul> <p>For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html">Annotation Consolidation</a>.</p> #[serde(rename = "AnnotationConsolidationLambdaArn")] pub annotation_consolidation_lambda_arn: String, } /// <p>A list of categorical hyperparameters to tune.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct CategoricalParameterRange { /// <p>The name of the categorical hyperparameter to tune.</p> #[serde(rename = "Name")] pub name: String, /// <p>A list of the categories for the hyperparameter.</p> #[serde(rename = "Values")] pub values: Vec<String>, } /// <p>Defines the possible values for a categorical hyperparameter.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct CategoricalParameterRangeSpecification { /// <p>The allowed categories for the hyperparameter.</p> #[serde(rename = "Values")] pub values: Vec<String>, } /// <p>A channel is a named input source that training algorithms can consume. </p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct Channel { /// <p>The name of the channel. </p> #[serde(rename = "ChannelName")] pub channel_name: String, /// <p>If training data is compressed, the compression type. The default value is <code>None</code>. <code>CompressionType</code> is used only in Pipe input mode. In File mode, leave this field unset or set it to None.</p> #[serde(rename = "CompressionType")] #[serde(skip_serializing_if = "Option::is_none")] pub compression_type: Option<String>, /// <p>The MIME type of the data.</p> #[serde(rename = "ContentType")] #[serde(skip_serializing_if = "Option::is_none")] pub content_type: Option<String>, /// <p>The location of the channel data.</p> #[serde(rename = "DataSource")] pub data_source: DataSource, /// <p>(Optional) The input mode to use for the data channel in a training job. If you don't set a value for <code>InputMode</code>, Amazon SageMaker uses the value set for <code>TrainingInputMode</code>. Use this parameter to override the <code>TrainingInputMode</code> setting in a <a>AlgorithmSpecification</a> request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use <code>File</code> input mode. To stream data directly from Amazon S3 to the container, choose <code>Pipe</code> input mode.</p> <p>To use a model for incremental training, choose <code>File</code> input model.</p> #[serde(rename = "InputMode")] #[serde(skip_serializing_if = "Option::is_none")] pub input_mode: Option<String>, /// <p><p/> <p>Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don't need to set this attribute. For more information, see <a href="https://mxnet.incubator.apache.org/architecture/note_data_loading.html#data-format">Create a Dataset Using RecordIO</a>. </p> <p>In File mode, leave this field unset or set it to None.</p></p> #[serde(rename = "RecordWrapperType")] #[serde(skip_serializing_if = "Option::is_none")] pub record_wrapper_type: Option<String>, /// <p>A configuration for a shuffle option for input data in a channel. If you use <code>S3Prefix</code> for <code>S3DataType</code>, this shuffles the results of the S3 key prefix matches. If you use <code>ManifestFile</code>, the order of the S3 object references in the <code>ManifestFile</code> is shuffled. If you use <code>AugmentedManifestFile</code>, the order of the JSON lines in the <code>AugmentedManifestFile</code> is shuffled. The shuffling order is determined using the <code>Seed</code> value.</p> <p>For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with <code>S3DataDistributionType</code> of <code>ShardedByS3Key</code>, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.</p> #[serde(rename = "ShuffleConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub shuffle_config: Option<ShuffleConfig>, } /// <p>Defines a named input source, called a channel, to be used by an algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ChannelSpecification { /// <p>A brief description of the channel.</p> #[serde(rename = "Description")] #[serde(skip_serializing_if = "Option::is_none")] pub description: Option<String>, /// <p>Indicates whether the channel is required by the algorithm.</p> #[serde(rename = "IsRequired")] #[serde(skip_serializing_if = "Option::is_none")] pub is_required: Option<bool>, /// <p>The name of the channel.</p> #[serde(rename = "Name")] pub name: String, /// <p>The allowed compression types, if data compression is used.</p> #[serde(rename = "SupportedCompressionTypes")] #[serde(skip_serializing_if = "Option::is_none")] pub supported_compression_types: Option<Vec<String>>, /// <p>The supported MIME types for the data.</p> #[serde(rename = "SupportedContentTypes")] pub supported_content_types: Vec<String>, /// <p>The allowed input mode, either FILE or PIPE.</p> <p>In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.</p> <p>In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.</p> #[serde(rename = "SupportedInputModes")] pub supported_input_modes: Vec<String>, } /// <p>Specifies summary information about a Git repository.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CodeRepositorySummary { /// <p>The Amazon Resource Name (ARN) of the Git repository.</p> #[serde(rename = "CodeRepositoryArn")] pub code_repository_arn: String, /// <p>The name of the Git repository.</p> #[serde(rename = "CodeRepositoryName")] pub code_repository_name: String, /// <p>The date and time that the Git repository was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>Configuration details for the Git repository, including the URL where it is located and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.</p> #[serde(rename = "GitConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub git_config: Option<GitConfig>, /// <p>The date and time that the Git repository was last modified.</p> #[serde(rename = "LastModifiedTime")] pub last_modified_time: f64, } /// <p>Identifies a Amazon Cognito user group. A user group can be used in on or more work teams.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct CognitoMemberDefinition { /// <p>An identifier for an application client. You must create the app client ID using Amazon Cognito.</p> #[serde(rename = "ClientId")] pub client_id: String, /// <p>An identifier for a user group.</p> #[serde(rename = "UserGroup")] pub user_group: String, /// <p>An identifier for a user pool. The user pool must be in the same region as the service that you are calling.</p> #[serde(rename = "UserPool")] pub user_pool: String, } /// <p>A summary of a model compilation job.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CompilationJobSummary { /// <p>The time when the model compilation job completed.</p> #[serde(rename = "CompilationEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub compilation_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the model compilation job.</p> #[serde(rename = "CompilationJobArn")] pub compilation_job_arn: String, /// <p>The name of the model compilation job that you want a summary for.</p> #[serde(rename = "CompilationJobName")] pub compilation_job_name: String, /// <p>The status of the model compilation job.</p> #[serde(rename = "CompilationJobStatus")] pub compilation_job_status: String, /// <p>The time when the model compilation job started.</p> #[serde(rename = "CompilationStartTime")] #[serde(skip_serializing_if = "Option::is_none")] pub compilation_start_time: Option<f64>, /// <p>The type of device that the model will run on after compilation has completed.</p> #[serde(rename = "CompilationTargetDevice")] pub compilation_target_device: String, /// <p>The time when the model compilation job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The time when the model compilation job was last modified.</p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, } /// <p>Describes the container, as part of model definition.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ContainerDefinition { /// <p>This parameter is ignored for models that contain only a <code>PrimaryContainer</code>.</p> <p>When a <code>ContainerDefinition</code> is part of an inference pipeline, the value of ths parameter uniquely identifies the container for the purposes of logging and metrics. For information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html">Use Logs and Metrics to Monitor an Inference Pipeline</a>. If you don't specify a value for this parameter for a <code>ContainerDefinition</code> that is part of an inference pipeline, a unique name is automatically assigned based on the position of the <code>ContainerDefinition</code> in the pipeline. If you specify a value for the <code>ContainerHostName</code> for any <code>ContainerDefinition</code> that is part of an inference pipeline, you must specify a value for the <code>ContainerHostName</code> parameter of every <code>ContainerDefinition</code> in that pipeline.</p> #[serde(rename = "ContainerHostname")] #[serde(skip_serializing_if = "Option::is_none")] pub container_hostname: Option<String>, /// <p>The environment variables to set in the Docker container. Each key and value in the <code>Environment</code> string to string map can have length of up to 1024. We support up to 16 entries in the map. </p> #[serde(rename = "Environment")] #[serde(skip_serializing_if = "Option::is_none")] pub environment: Option<::std::collections::HashMap<String, String>>, /// <p>The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code> image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a> </p> #[serde(rename = "Image")] #[serde(skip_serializing_if = "Option::is_none")] pub image: Option<String>, /// <p><p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Common Parameters</a>. </p> <p>If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see <a href="http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating AWS STS in an AWS Region</a> in the <i>AWS Identity and Access Management User Guide</i>.</p> <important> <p>If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide a S3 path to the model artifacts in <code>ModelDataUrl</code>.</p> </important></p> #[serde(rename = "ModelDataUrl")] #[serde(skip_serializing_if = "Option::is_none")] pub model_data_url: Option<String>, /// <p>The name of the model package to use to create the model.</p> #[serde(rename = "ModelPackageName")] #[serde(skip_serializing_if = "Option::is_none")] pub model_package_name: Option<String>, } /// <p>A list of continuous hyperparameters to tune.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ContinuousParameterRange { /// <p>The maximum value for the hyperparameter. The tuning job uses floating-point values between <code>MinValue</code> value and this value for tuning.</p> #[serde(rename = "MaxValue")] pub max_value: String, /// <p>The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and <code>MaxValue</code>for tuning.</p> #[serde(rename = "MinValue")] pub min_value: String, /// <p>The name of the continuous hyperparameter to tune.</p> #[serde(rename = "Name")] pub name: String, /// <p><p>The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see <a href="http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.</p> </dd> <dt>Logarithmic</dt> <dd> <p>Hyperparemeter tuning searches the values in the hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling works only for ranges that have only values greater than 0.</p> </dd> <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparemeter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse logarithmic scaling works only for ranges that are entirely within the range 0<=x<1.0.</p> </dd> </dl></p> #[serde(rename = "ScalingType")] #[serde(skip_serializing_if = "Option::is_none")] pub scaling_type: Option<String>, } /// <p>Defines the possible values for a continuous hyperparameter.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ContinuousParameterRangeSpecification { /// <p>The maximum floating-point value allowed.</p> #[serde(rename = "MaxValue")] pub max_value: String, /// <p>The minimum floating-point value allowed.</p> #[serde(rename = "MinValue")] pub min_value: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateAlgorithmInput { /// <p>A description of the algorithm.</p> #[serde(rename = "AlgorithmDescription")] #[serde(skip_serializing_if = "Option::is_none")] pub algorithm_description: Option<String>, /// <p>The name of the algorithm.</p> #[serde(rename = "AlgorithmName")] pub algorithm_name: String, /// <p>Whether to certify the algorithm so that it can be listed in AWS Marketplace.</p> #[serde(rename = "CertifyForMarketplace")] #[serde(skip_serializing_if = "Option::is_none")] pub certify_for_marketplace: Option<bool>, /// <p><p>Specifies details about inference jobs that the algorithm runs, including the following:</p> <ul> <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li> <li> <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p> </li> <li> <p>The input and output content formats that the algorithm supports for inference.</p> </li> </ul></p> #[serde(rename = "InferenceSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub inference_specification: Option<InferenceSpecification>, /// <p><p>Specifies details about training jobs run by this algorithm, including the following:</p> <ul> <li> <p>The Amazon ECR path of the container and the version digest of the algorithm.</p> </li> <li> <p>The hyperparameters that the algorithm supports.</p> </li> <li> <p>The instance types that the algorithm supports for training.</p> </li> <li> <p>Whether the algorithm supports distributed training.</p> </li> <li> <p>The metrics that the algorithm emits to Amazon CloudWatch.</p> </li> <li> <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p> </li> <li> <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p> </li> </ul></p> #[serde(rename = "TrainingSpecification")] pub training_specification: TrainingSpecification, /// <p>Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code.</p> #[serde(rename = "ValidationSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub validation_specification: Option<AlgorithmValidationSpecification>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateAlgorithmOutput { /// <p>The Amazon Resource Name (ARN) of the new algorithm.</p> #[serde(rename = "AlgorithmArn")] pub algorithm_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateCodeRepositoryInput { /// <p>The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p> #[serde(rename = "CodeRepositoryName")] pub code_repository_name: String, /// <p>Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.</p> #[serde(rename = "GitConfig")] pub git_config: GitConfig, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateCodeRepositoryOutput { /// <p>The Amazon Resource Name (ARN) of the new repository.</p> #[serde(rename = "CodeRepositoryArn")] pub code_repository_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateCompilationJobRequest { /// <p>A name for the model compilation job. The name must be unique within the AWS Region and within your AWS account. </p> #[serde(rename = "CompilationJobName")] pub compilation_job_name: String, /// <p>Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.</p> #[serde(rename = "InputConfig")] pub input_config: InputConfig, /// <p>Provides information about the output location for the compiled model and the target device the model runs on.</p> #[serde(rename = "OutputConfig")] pub output_config: OutputConfig, /// <p>The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. </p> <p>During model compilation, Amazon SageMaker needs your permission to:</p> <ul> <li> <p>Read input data from an S3 bucket</p> </li> <li> <p>Write model artifacts to an S3 bucket</p> </li> <li> <p>Write logs to Amazon CloudWatch Logs</p> </li> <li> <p>Publish metrics to Amazon CloudWatch</p> </li> </ul> <p>You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles.</a> </p> #[serde(rename = "RoleArn")] pub role_arn: String, /// <p>The duration allowed for model compilation.</p> #[serde(rename = "StoppingCondition")] pub stopping_condition: StoppingCondition, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateCompilationJobResponse { /// <p><p>If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format:</p> <ul> <li> <p> <code>CompilationJobArn</code>: The Amazon Resource Name (ARN) of the compiled job.</p> </li> </ul></p> #[serde(rename = "CompilationJobArn")] pub compilation_job_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateEndpointConfigInput { /// <p>The name of the endpoint configuration. You specify this name in a <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> request. </p> #[serde(rename = "EndpointConfigName")] pub endpoint_config_name: String, /// <p>The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.</p> #[serde(rename = "KmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub kms_key_id: Option<String>, /// <p>An list of <code>ProductionVariant</code> objects, one for each model that you want to host at this endpoint.</p> #[serde(rename = "ProductionVariants")] pub production_variants: Vec<ProductionVariant>, /// <p>A list of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i> AWS Billing and Cost Management User Guide</i>. </p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateEndpointConfigOutput { /// <p>The Amazon Resource Name (ARN) of the endpoint configuration. </p> #[serde(rename = "EndpointConfigArn")] pub endpoint_config_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateEndpointInput { /// <p>The name of an endpoint configuration. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html">CreateEndpointConfig</a>. </p> #[serde(rename = "EndpointConfigName")] pub endpoint_config_name: String, /// <p>The name of the endpoint. The name must be unique within an AWS Region in your AWS account.</p> #[serde(rename = "EndpointName")] pub endpoint_name: String, /// <p>An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a>in the <i>AWS Billing and Cost Management User Guide</i>. </p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateEndpointOutput { /// <p>The Amazon Resource Name (ARN) of the endpoint.</p> #[serde(rename = "EndpointArn")] pub endpoint_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateHyperParameterTuningJobRequest { /// <p>The <a>HyperParameterTuningJobConfig</a> object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see <a>automatic-model-tuning</a> </p> #[serde(rename = "HyperParameterTuningJobConfig")] pub hyper_parameter_tuning_job_config: HyperParameterTuningJobConfig, /// <p>The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same AWS account and AWS Region. The name must have { } to { } characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.</p> #[serde(rename = "HyperParameterTuningJobName")] pub hyper_parameter_tuning_job_name: String, /// <p>An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.</p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, /// <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.</p> #[serde(rename = "TrainingJobDefinition")] #[serde(skip_serializing_if = "Option::is_none")] pub training_job_definition: Option<HyperParameterTrainingJobDefinition>, /// <p><p>Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p> <p>All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify <code>IDENTICAL<em>DATA</em>AND_ALGORITHM</code> as the <code>WarmStartType</code> value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.</p> <note> <p>All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.</p> </note></p> #[serde(rename = "WarmStartConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub warm_start_config: Option<HyperParameterTuningJobWarmStartConfig>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateHyperParameterTuningJobResponse { /// <p>The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.</p> #[serde(rename = "HyperParameterTuningJobArn")] pub hyper_parameter_tuning_job_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateLabelingJobRequest { /// <p>Configures the information required for human workers to complete a labeling task.</p> #[serde(rename = "HumanTaskConfig")] pub human_task_config: HumanTaskConfig, /// <p>Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.</p> #[serde(rename = "InputConfig")] pub input_config: LabelingJobInputConfig, /// <p>The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The name can't end with "-metadata". If you are running a semantic segmentation labeling job, the attribute name must end with "-ref". If you are running any other kind of labeling job, the attribute name must not end with "-ref".</p> #[serde(rename = "LabelAttributeName")] pub label_attribute_name: String, /// <p>The S3 URL of the file that defines the categories used to label the data objects.</p> <p>The file is a JSON structure in the following format:</p> <p> <code>{</code> </p> <p> <code> "document-version": "2018-11-28"</code> </p> <p> <code> "labels": [</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label 1</i>"</code> </p> <p> <code> },</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label 2</i>"</code> </p> <p> <code> },</code> </p> <p> <code> ...</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label n</i>"</code> </p> <p> <code> }</code> </p> <p> <code> ]</code> </p> <p> <code>}</code> </p> #[serde(rename = "LabelCategoryConfigS3Uri")] #[serde(skip_serializing_if = "Option::is_none")] pub label_category_config_s3_uri: Option<String>, /// <p>Configures the information required to perform automated data labeling.</p> #[serde(rename = "LabelingJobAlgorithmsConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_algorithms_config: Option<LabelingJobAlgorithmsConfig>, /// <p>The name of the labeling job. This name is used to identify the job in a list of labeling jobs.</p> #[serde(rename = "LabelingJobName")] pub labeling_job_name: String, /// <p>The location of the output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.</p> #[serde(rename = "OutputConfig")] pub output_config: LabelingJobOutputConfig, /// <p>The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.</p> #[serde(rename = "RoleArn")] pub role_arn: String, /// <p>A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.</p> #[serde(rename = "StoppingConditions")] #[serde(skip_serializing_if = "Option::is_none")] pub stopping_conditions: Option<LabelingJobStoppingConditions>, /// <p>An array of key/value pairs. For more information, see <a href="http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>.</p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateLabelingJobResponse { /// <p>The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.</p> #[serde(rename = "LabelingJobArn")] pub labeling_job_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateModelInput { /// <p>Specifies the containers in the inference pipeline.</p> #[serde(rename = "Containers")] #[serde(skip_serializing_if = "Option::is_none")] pub containers: Option<Vec<ContainerDefinition>>, /// <p><p>Isolates the model container. No inbound or outbound network calls can be made to or from the model container.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p> #[serde(rename = "EnableNetworkIsolation")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_network_isolation: Option<bool>, /// <p><p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note></p> #[serde(rename = "ExecutionRoleArn")] pub execution_role_arn: String, /// <p>The name of the new model.</p> #[serde(rename = "ModelName")] pub model_name: String, /// <p>The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions. </p> #[serde(rename = "PrimaryContainer")] #[serde(skip_serializing_if = "Option::is_none")] pub primary_container: Option<ContainerDefinition>, /// <p>An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>. </p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, /// <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. <code>VpcConfig</code> is used in hosting services and in batch transform. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html">Protect Endpoints by Using an Amazon Virtual Private Cloud</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html">Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud</a>.</p> #[serde(rename = "VpcConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub vpc_config: Option<VpcConfig>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateModelOutput { /// <p>The ARN of the model created in Amazon SageMaker.</p> #[serde(rename = "ModelArn")] pub model_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateModelPackageInput { /// <p>Whether to certify the model package for listing on AWS Marketplace.</p> #[serde(rename = "CertifyForMarketplace")] #[serde(skip_serializing_if = "Option::is_none")] pub certify_for_marketplace: Option<bool>, /// <p><p>Specifies details about inference jobs that can be run with models based on this model package, including the following:</p> <ul> <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li> <li> <p>The instance types that the model package supports for transform jobs and real-time endpoints used for inference.</p> </li> <li> <p>The input and output content formats that the model package supports for inference.</p> </li> </ul></p> #[serde(rename = "InferenceSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub inference_specification: Option<InferenceSpecification>, /// <p>A description of the model package.</p> #[serde(rename = "ModelPackageDescription")] #[serde(skip_serializing_if = "Option::is_none")] pub model_package_description: Option<String>, /// <p>The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p> #[serde(rename = "ModelPackageName")] pub model_package_name: String, /// <p>Details about the algorithm that was used to create the model package.</p> #[serde(rename = "SourceAlgorithmSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub source_algorithm_specification: Option<SourceAlgorithmSpecification>, /// <p>Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.</p> #[serde(rename = "ValidationSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub validation_specification: Option<ModelPackageValidationSpecification>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateModelPackageOutput { /// <p>The Amazon Resource Name (ARN) of the new model package.</p> #[serde(rename = "ModelPackageArn")] pub model_package_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateNotebookInstanceInput { /// <p>A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>.</p> #[serde(rename = "AcceleratorTypes")] #[serde(skip_serializing_if = "Option::is_none")] pub accelerator_types: Option<Vec<String>>, /// <p>An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p> #[serde(rename = "AdditionalCodeRepositories")] #[serde(skip_serializing_if = "Option::is_none")] pub additional_code_repositories: Option<Vec<String>>, /// <p>A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p> #[serde(rename = "DefaultCodeRepository")] #[serde(skip_serializing_if = "Option::is_none")] pub default_code_repository: Option<String>, /// <p>Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this to <code>Disabled</code> this notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access">Notebook Instances Are Internet-Enabled by Default</a>. You can set the value of this parameter to <code>Disabled</code> only if you set a value for the <code>SubnetId</code> parameter.</p> #[serde(rename = "DirectInternetAccess")] #[serde(skip_serializing_if = "Option::is_none")] pub direct_internet_access: Option<String>, /// <p>The type of ML compute instance to launch for the notebook instance.</p> #[serde(rename = "InstanceType")] pub instance_type: String, /// <p>The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see <a href="http://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html">Enabling and Disabling Keys</a> in the <i>AWS Key Management Service Developer Guide</i>.</p> #[serde(rename = "KmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub kms_key_id: Option<String>, /// <p>The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p> #[serde(rename = "LifecycleConfigName")] #[serde(skip_serializing_if = "Option::is_none")] pub lifecycle_config_name: Option<String>, /// <p>The name of the new notebook instance.</p> #[serde(rename = "NotebookInstanceName")] pub notebook_instance_name: String, /// <p><p> When you send any requests to AWS resources from the notebook instance, Amazon SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note></p> #[serde(rename = "RoleArn")] pub role_arn: String, /// <p><p>Whether root access is enabled or disabled for users of the notebook instance. The default value is <code>Enabled</code>.</p> <note> <p>Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.</p> </note></p> #[serde(rename = "RootAccess")] #[serde(skip_serializing_if = "Option::is_none")] pub root_access: Option<String>, /// <p>The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet. </p> #[serde(rename = "SecurityGroupIds")] #[serde(skip_serializing_if = "Option::is_none")] pub security_group_ids: Option<Vec<String>>, /// <p>The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance. </p> #[serde(rename = "SubnetId")] #[serde(skip_serializing_if = "Option::is_none")] pub subnet_id: Option<String>, /// <p>A list of tags to associate with the notebook instance. You can add tags later by using the <code>CreateTags</code> API.</p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, /// <p>The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.</p> #[serde(rename = "VolumeSizeInGB")] #[serde(skip_serializing_if = "Option::is_none")] pub volume_size_in_gb: Option<i64>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateNotebookInstanceLifecycleConfigInput { /// <p>The name of the lifecycle configuration.</p> #[serde(rename = "NotebookInstanceLifecycleConfigName")] pub notebook_instance_lifecycle_config_name: String, /// <p>A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.</p> #[serde(rename = "OnCreate")] #[serde(skip_serializing_if = "Option::is_none")] pub on_create: Option<Vec<NotebookInstanceLifecycleHook>>, /// <p>A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.</p> #[serde(rename = "OnStart")] #[serde(skip_serializing_if = "Option::is_none")] pub on_start: Option<Vec<NotebookInstanceLifecycleHook>>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateNotebookInstanceLifecycleConfigOutput { /// <p>The Amazon Resource Name (ARN) of the lifecycle configuration.</p> #[serde(rename = "NotebookInstanceLifecycleConfigArn")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_lifecycle_config_arn: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateNotebookInstanceOutput { /// <p>The Amazon Resource Name (ARN) of the notebook instance. </p> #[serde(rename = "NotebookInstanceArn")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_arn: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreatePresignedNotebookInstanceUrlInput { /// <p>The name of the notebook instance.</p> #[serde(rename = "NotebookInstanceName")] pub notebook_instance_name: String, /// <p>The duration of the session, in seconds. The default is 12 hours.</p> #[serde(rename = "SessionExpirationDurationInSeconds")] #[serde(skip_serializing_if = "Option::is_none")] pub session_expiration_duration_in_seconds: Option<i64>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreatePresignedNotebookInstanceUrlOutput { /// <p>A JSON object that contains the URL string. </p> #[serde(rename = "AuthorizedUrl")] #[serde(skip_serializing_if = "Option::is_none")] pub authorized_url: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateTrainingJobRequest { /// <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>. </p> #[serde(rename = "AlgorithmSpecification")] pub algorithm_specification: AlgorithmSpecification, /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p> #[serde(rename = "EnableInterContainerTrafficEncryption")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_inter_container_traffic_encryption: Option<bool>, /// <p><p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p> #[serde(rename = "EnableNetworkIsolation")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_network_isolation: Option<bool>, /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>. </p> #[serde(rename = "HyperParameters")] #[serde(skip_serializing_if = "Option::is_none")] pub hyper_parameters: Option<::std::collections::HashMap<String, String>>, /// <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location. </p> <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3 location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. </p> <p>Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. </p> #[serde(rename = "InputDataConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub input_data_config: Option<Vec<Channel>>, /// <p>Specifies the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts. </p> #[serde(rename = "OutputDataConfig")] pub output_data_config: OutputDataConfig, /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training. </p> <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p> #[serde(rename = "ResourceConfig")] pub resource_config: ResourceConfig, /// <p><p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf. </p> <p>During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note></p> #[serde(rename = "RoleArn")] pub role_arn: String, /// <p>Sets a duration for training. Use this parameter to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts. </p> <p>When Amazon SageMaker terminates a job because the stopping condition has been met, training algorithms provided by Amazon SageMaker save the intermediate results of the job. This intermediate data is a valid model artifact. You can use it to create a model using the <code>CreateModel</code> API. </p> #[serde(rename = "StoppingCondition")] pub stopping_condition: StoppingCondition, /// <p>An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>. </p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, /// <p>The name of the training job. The name must be unique within an AWS Region in an AWS account. </p> #[serde(rename = "TrainingJobName")] pub training_job_name: String, /// <p>A <a>VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p> #[serde(rename = "VpcConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub vpc_config: Option<VpcConfig>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateTrainingJobResponse { /// <p>The Amazon Resource Name (ARN) of the training job.</p> #[serde(rename = "TrainingJobArn")] pub training_job_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateTransformJobRequest { /// <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i/> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. </p> <p>To enable the batch strategy, you must set <code>SplitType</code> to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p> <p>To use only one record when making an HTTP invocation request to a container, set <code>BatchStrategy</code> to <code>SingleRecord</code> and <code>SplitType</code> to <code>Line</code>.</p> <p>To fit as many records in a mini-batch as can fit within the <code>MaxPayloadInMB</code> limit, set <code>BatchStrategy</code> to <code>MultiRecord</code> and <code>SplitType</code> to <code>Line</code>.</p> #[serde(rename = "BatchStrategy")] #[serde(skip_serializing_if = "Option::is_none")] pub batch_strategy: Option<String>, /// <p>The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.</p> #[serde(rename = "Environment")] #[serde(skip_serializing_if = "Option::is_none")] pub environment: Option<::std::collections::HashMap<String, String>>, /// <p>The maximum number of parallel requests that can be sent to each instance in a transform job. If <code>MaxConcurrentTransforms</code> is set to <code>0</code> or left unset, Amazon SageMaker checks the optional execution-parameters to determine the optimal settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is <code>1</code>. For more information on execution-parameters, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests">How Containers Serve Requests</a>. For built-in algorithms, you don't need to set a value for <code>MaxConcurrentTransforms</code>.</p> #[serde(rename = "MaxConcurrentTransforms")] #[serde(skip_serializing_if = "Option::is_none")] pub max_concurrent_transforms: Option<i64>, /// <p>The maximum allowed size of the payload, in MB. A <i>payload</i> is the data portion of a record (without metadata). The value in <code>MaxPayloadInMB</code> must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is <code>6</code> MB. </p> <p>For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to <code>0</code>. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.</p> #[serde(rename = "MaxPayloadInMB")] #[serde(skip_serializing_if = "Option::is_none")] pub max_payload_in_mb: Option<i64>, /// <p>The name of the model that you want to use for the transform job. <code>ModelName</code> must be the name of an existing Amazon SageMaker model within an AWS Region in an AWS account.</p> #[serde(rename = "ModelName")] pub model_name: String, /// <p>(Optional) An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>.</p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, /// <p>Describes the input source and the way the transform job consumes it.</p> #[serde(rename = "TransformInput")] pub transform_input: TransformInput, /// <p>The name of the transform job. The name must be unique within an AWS Region in an AWS account. </p> #[serde(rename = "TransformJobName")] pub transform_job_name: String, /// <p>Describes the results of the transform job.</p> #[serde(rename = "TransformOutput")] pub transform_output: TransformOutput, /// <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p> #[serde(rename = "TransformResources")] pub transform_resources: TransformResources, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateTransformJobResponse { /// <p>The Amazon Resource Name (ARN) of the transform job.</p> #[serde(rename = "TransformJobArn")] pub transform_job_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct CreateWorkteamRequest { /// <p>A description of the work team.</p> #[serde(rename = "Description")] pub description: String, /// <p>A list of <code>MemberDefinition</code> objects that contains objects that identify the Amazon Cognito user pool that makes up the work team. For more information, see <a href="http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html">Amazon Cognito User Pools</a>.</p> <p>All of the <code>CognitoMemberDefinition</code> objects that make up the member definition must have the same <code>ClientId</code> and <code>UserPool</code> values.</p> #[serde(rename = "MemberDefinitions")] pub member_definitions: Vec<MemberDefinition>, /// <p>Configures notification of workers regarding available or expiring work items.</p> #[serde(rename = "NotificationConfiguration")] #[serde(skip_serializing_if = "Option::is_none")] pub notification_configuration: Option<NotificationConfiguration>, /// <p><p/></p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, /// <p>The name of the work team. Use this name to identify the work team.</p> #[serde(rename = "WorkteamName")] pub workteam_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct CreateWorkteamResponse { /// <p>The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.</p> #[serde(rename = "WorkteamArn")] #[serde(skip_serializing_if = "Option::is_none")] pub workteam_arn: Option<String>, } /// <p>Describes the location of the channel data.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct DataSource { /// <p>The S3 location of the data source that is associated with a channel.</p> #[serde(rename = "S3DataSource")] #[serde(skip_serializing_if = "Option::is_none")] pub s3_data_source: Option<S3DataSource>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteAlgorithmInput { /// <p>The name of the algorithm to delete.</p> #[serde(rename = "AlgorithmName")] pub algorithm_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteCodeRepositoryInput { /// <p>The name of the Git repository to delete.</p> #[serde(rename = "CodeRepositoryName")] pub code_repository_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteEndpointConfigInput { /// <p>The name of the endpoint configuration that you want to delete.</p> #[serde(rename = "EndpointConfigName")] pub endpoint_config_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteEndpointInput { /// <p>The name of the endpoint that you want to delete.</p> #[serde(rename = "EndpointName")] pub endpoint_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteModelInput { /// <p>The name of the model to delete.</p> #[serde(rename = "ModelName")] pub model_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteModelPackageInput { /// <p>The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p> #[serde(rename = "ModelPackageName")] pub model_package_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteNotebookInstanceInput { /// <p>The name of the Amazon SageMaker notebook instance to delete.</p> #[serde(rename = "NotebookInstanceName")] pub notebook_instance_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteNotebookInstanceLifecycleConfigInput { /// <p>The name of the lifecycle configuration to delete.</p> #[serde(rename = "NotebookInstanceLifecycleConfigName")] pub notebook_instance_lifecycle_config_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteTagsInput { /// <p>The Amazon Resource Name (ARN) of the resource whose tags you want to delete.</p> #[serde(rename = "ResourceArn")] pub resource_arn: String, /// <p>An array or one or more tag keys to delete.</p> #[serde(rename = "TagKeys")] pub tag_keys: Vec<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DeleteTagsOutput {} #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DeleteWorkteamRequest { /// <p>The name of the work team to delete.</p> #[serde(rename = "WorkteamName")] pub workteam_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DeleteWorkteamResponse { /// <p>Returns <code>true</code> if the work team was successfully deleted; otherwise, returns <code>false</code>.</p> #[serde(rename = "Success")] pub success: bool, } /// <p>Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this <a>ProductionVariant</a>.</p> <p>If you used the <code>registry/repository[:tag]</code> form to specify the image path of the primary container when you created the model hosted in this <code>ProductionVariant</code>, the path resolves to a path of the form <code>registry/repository[@digest]</code>. A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see <a href="http://docs.aws.amazon.com//AmazonECR/latest/userguide/docker-pull-ecr-image.html">Pulling an Image</a> in the <i>Amazon ECR User Guide</i>.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DeployedImage { /// <p>The date and time when the image path for the model resolved to the <code>ResolvedImage</code> </p> #[serde(rename = "ResolutionTime")] #[serde(skip_serializing_if = "Option::is_none")] pub resolution_time: Option<f64>, /// <p>The specific digest path of the image hosted in this <code>ProductionVariant</code>.</p> #[serde(rename = "ResolvedImage")] #[serde(skip_serializing_if = "Option::is_none")] pub resolved_image: Option<String>, /// <p>The image path you specified when you created the model.</p> #[serde(rename = "SpecifiedImage")] #[serde(skip_serializing_if = "Option::is_none")] pub specified_image: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeAlgorithmInput { /// <p>The name of the algorithm to describe.</p> #[serde(rename = "AlgorithmName")] pub algorithm_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeAlgorithmOutput { /// <p>The Amazon Resource Name (ARN) of the algorithm.</p> #[serde(rename = "AlgorithmArn")] pub algorithm_arn: String, /// <p>A brief summary about the algorithm.</p> #[serde(rename = "AlgorithmDescription")] #[serde(skip_serializing_if = "Option::is_none")] pub algorithm_description: Option<String>, /// <p>The name of the algorithm being described.</p> #[serde(rename = "AlgorithmName")] pub algorithm_name: String, /// <p>The current status of the algorithm.</p> #[serde(rename = "AlgorithmStatus")] pub algorithm_status: String, /// <p>Details about the current status of the algorithm.</p> #[serde(rename = "AlgorithmStatusDetails")] pub algorithm_status_details: AlgorithmStatusDetails, /// <p>Whether the algorithm is certified to be listed in AWS Marketplace.</p> #[serde(rename = "CertifyForMarketplace")] #[serde(skip_serializing_if = "Option::is_none")] pub certify_for_marketplace: Option<bool>, /// <p>A timestamp specifying when the algorithm was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>Details about inference jobs that the algorithm runs.</p> #[serde(rename = "InferenceSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub inference_specification: Option<InferenceSpecification>, /// <p>The product identifier of the algorithm.</p> #[serde(rename = "ProductId")] #[serde(skip_serializing_if = "Option::is_none")] pub product_id: Option<String>, /// <p>Details about training jobs run by this algorithm.</p> #[serde(rename = "TrainingSpecification")] pub training_specification: TrainingSpecification, /// <p>Details about configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.</p> #[serde(rename = "ValidationSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub validation_specification: Option<AlgorithmValidationSpecification>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeCodeRepositoryInput { /// <p>The name of the Git repository to describe.</p> #[serde(rename = "CodeRepositoryName")] pub code_repository_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeCodeRepositoryOutput { /// <p>The Amazon Resource Name (ARN) of the Git repository.</p> #[serde(rename = "CodeRepositoryArn")] pub code_repository_arn: String, /// <p>The name of the Git repository.</p> #[serde(rename = "CodeRepositoryName")] pub code_repository_name: String, /// <p>The date and time that the repository was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository.</p> #[serde(rename = "GitConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub git_config: Option<GitConfig>, /// <p>The date and time that the repository was last changed.</p> #[serde(rename = "LastModifiedTime")] pub last_modified_time: f64, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeCompilationJobRequest { /// <p>The name of the model compilation job that you want information about.</p> #[serde(rename = "CompilationJobName")] pub compilation_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeCompilationJobResponse { /// <p>The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed. </p> #[serde(rename = "CompilationEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub compilation_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.</p> #[serde(rename = "CompilationJobArn")] pub compilation_job_arn: String, /// <p>The name of the model compilation job.</p> #[serde(rename = "CompilationJobName")] pub compilation_job_name: String, /// <p>The status of the model compilation job.</p> #[serde(rename = "CompilationJobStatus")] pub compilation_job_status: String, /// <p>The time when the model compilation job started the <code>CompilationJob</code> instances. </p> <p>You are billed for the time between this timestamp and the timestamp in the <a>DescribeCompilationJobResponse$CompilationEndTime</a> field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container. </p> #[serde(rename = "CompilationStartTime")] #[serde(skip_serializing_if = "Option::is_none")] pub compilation_start_time: Option<f64>, /// <p>The time that the model compilation job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>If a model compilation job failed, the reason it failed. </p> #[serde(rename = "FailureReason")] pub failure_reason: String, /// <p>Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.</p> #[serde(rename = "InputConfig")] pub input_config: InputConfig, /// <p>The time that the status of the model compilation job was last modified.</p> #[serde(rename = "LastModifiedTime")] pub last_modified_time: f64, /// <p>Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.</p> #[serde(rename = "ModelArtifacts")] pub model_artifacts: ModelArtifacts, /// <p>Information about the output location for the compiled model and the target device that the model runs on.</p> #[serde(rename = "OutputConfig")] pub output_config: OutputConfig, /// <p>The Amazon Resource Name (ARN) of the model compilation job.</p> #[serde(rename = "RoleArn")] pub role_arn: String, /// <p>The duration allowed for model compilation.</p> #[serde(rename = "StoppingCondition")] pub stopping_condition: StoppingCondition, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeEndpointConfigInput { /// <p>The name of the endpoint configuration.</p> #[serde(rename = "EndpointConfigName")] pub endpoint_config_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeEndpointConfigOutput { /// <p>A timestamp that shows when the endpoint configuration was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The Amazon Resource Name (ARN) of the endpoint configuration.</p> #[serde(rename = "EndpointConfigArn")] pub endpoint_config_arn: String, /// <p>Name of the Amazon SageMaker endpoint configuration.</p> #[serde(rename = "EndpointConfigName")] pub endpoint_config_name: String, /// <p>AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.</p> #[serde(rename = "KmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub kms_key_id: Option<String>, /// <p>An array of <code>ProductionVariant</code> objects, one for each model that you want to host at this endpoint.</p> #[serde(rename = "ProductionVariants")] pub production_variants: Vec<ProductionVariant>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeEndpointInput { /// <p>The name of the endpoint.</p> #[serde(rename = "EndpointName")] pub endpoint_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeEndpointOutput { /// <p>A timestamp that shows when the endpoint was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The Amazon Resource Name (ARN) of the endpoint.</p> #[serde(rename = "EndpointArn")] pub endpoint_arn: String, /// <p>The name of the endpoint configuration associated with this endpoint.</p> #[serde(rename = "EndpointConfigName")] pub endpoint_config_name: String, /// <p>Name of the endpoint.</p> #[serde(rename = "EndpointName")] pub endpoint_name: String, /// <p><p>The status of the endpoint.</p> <ul> <li> <p> <code>OutOfService</code>: Endpoint is not available to take incoming requests.</p> </li> <li> <p> <code>Creating</code>: <a>CreateEndpoint</a> is executing.</p> </li> <li> <p> <code>Updating</code>: <a>UpdateEndpoint</a> or <a>UpdateEndpointWeightsAndCapacities</a> is executing.</p> </li> <li> <p> <code>SystemUpdating</code>: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.</p> </li> <li> <p> <code>RollingBack</code>: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an <code>InService</code> status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an <a>UpdateEndpointWeightsAndCapacities</a> call or when the <a>UpdateEndpointWeightsAndCapacities</a> operation is called explicitly.</p> </li> <li> <p> <code>InService</code>: Endpoint is available to process incoming requests.</p> </li> <li> <p> <code>Deleting</code>: <a>DeleteEndpoint</a> is executing.</p> </li> <li> <p> <code>Failed</code>: Endpoint could not be created, updated, or re-scaled. Use <a>DescribeEndpointOutput$FailureReason</a> for information about the failure. <a>DeleteEndpoint</a> is the only operation that can be performed on a failed endpoint.</p> </li> </ul></p> #[serde(rename = "EndpointStatus")] pub endpoint_status: String, /// <p>If the status of the endpoint is <code>Failed</code>, the reason why it failed. </p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>A timestamp that shows when the endpoint was last modified.</p> #[serde(rename = "LastModifiedTime")] pub last_modified_time: f64, /// <p> An array of <a>ProductionVariantSummary</a> objects, one for each model hosted behind this endpoint. </p> #[serde(rename = "ProductionVariants")] #[serde(skip_serializing_if = "Option::is_none")] pub production_variants: Option<Vec<ProductionVariantSummary>>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeHyperParameterTuningJobRequest { /// <p>The name of the tuning job to describe.</p> #[serde(rename = "HyperParameterTuningJobName")] pub hyper_parameter_tuning_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeHyperParameterTuningJobResponse { /// <p>A <a>TrainingJobSummary</a> object that describes the training job that completed with the best current <a>HyperParameterTuningJobObjective</a>.</p> #[serde(rename = "BestTrainingJob")] #[serde(skip_serializing_if = "Option::is_none")] pub best_training_job: Option<HyperParameterTrainingJobSummary>, /// <p>The date and time that the tuning job started.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>If the tuning job failed, the reason it failed.</p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>The date and time that the tuning job ended.</p> #[serde(rename = "HyperParameterTuningEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub hyper_parameter_tuning_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the tuning job.</p> #[serde(rename = "HyperParameterTuningJobArn")] pub hyper_parameter_tuning_job_arn: String, /// <p>The <a>HyperParameterTuningJobConfig</a> object that specifies the configuration of the tuning job.</p> #[serde(rename = "HyperParameterTuningJobConfig")] pub hyper_parameter_tuning_job_config: HyperParameterTuningJobConfig, /// <p>The name of the tuning job.</p> #[serde(rename = "HyperParameterTuningJobName")] pub hyper_parameter_tuning_job_name: String, /// <p>The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.</p> #[serde(rename = "HyperParameterTuningJobStatus")] pub hyper_parameter_tuning_job_status: String, /// <p>The date and time that the status of the tuning job was modified. </p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>The <a>ObjectiveStatusCounters</a> object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.</p> #[serde(rename = "ObjectiveStatusCounters")] pub objective_status_counters: ObjectiveStatusCounters, /// <p>If the hyperparameter tuning job is an warm start tuning job with a <code>WarmStartType</code> of <code>IDENTICAL_DATA_AND_ALGORITHM</code>, this is the <a>TrainingJobSummary</a> for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.</p> #[serde(rename = "OverallBestTrainingJob")] #[serde(skip_serializing_if = "Option::is_none")] pub overall_best_training_job: Option<HyperParameterTrainingJobSummary>, /// <p>The <a>HyperParameterTrainingJobDefinition</a> object that specifies the definition of the training jobs that this tuning job launches.</p> #[serde(rename = "TrainingJobDefinition")] #[serde(skip_serializing_if = "Option::is_none")] pub training_job_definition: Option<HyperParameterTrainingJobDefinition>, /// <p>The <a>TrainingJobStatusCounters</a> object that specifies the number of training jobs, categorized by status, that this tuning job launched.</p> #[serde(rename = "TrainingJobStatusCounters")] pub training_job_status_counters: TrainingJobStatusCounters, /// <p>The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p> #[serde(rename = "WarmStartConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub warm_start_config: Option<HyperParameterTuningJobWarmStartConfig>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeLabelingJobRequest { /// <p>The name of the labeling job to return information for.</p> #[serde(rename = "LabelingJobName")] pub labeling_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeLabelingJobResponse { /// <p>The date and time that the labeling job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>If the job failed, the reason that it failed. </p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>Configuration information required for human workers to complete a labeling task.</p> #[serde(rename = "HumanTaskConfig")] pub human_task_config: HumanTaskConfig, /// <p>Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.</p> #[serde(rename = "InputConfig")] pub input_config: LabelingJobInputConfig, /// <p>A unique identifier for work done as part of a labeling job.</p> #[serde(rename = "JobReferenceCode")] pub job_reference_code: String, /// <p>The attribute used as the label in the output manifest file.</p> #[serde(rename = "LabelAttributeName")] #[serde(skip_serializing_if = "Option::is_none")] pub label_attribute_name: Option<String>, /// <p>The S3 location of the JSON file that defines the categories used to label data objects.</p> <p>The file is a JSON structure in the following format:</p> <p> <code>{</code> </p> <p> <code> "document-version": "2018-11-28"</code> </p> <p> <code> "labels": [</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label 1</i>"</code> </p> <p> <code> },</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label 2</i>"</code> </p> <p> <code> },</code> </p> <p> <code> ...</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label n</i>"</code> </p> <p> <code> }</code> </p> <p> <code> ]</code> </p> <p> <code>}</code> </p> #[serde(rename = "LabelCategoryConfigS3Uri")] #[serde(skip_serializing_if = "Option::is_none")] pub label_category_config_s3_uri: Option<String>, /// <p>Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled. </p> #[serde(rename = "LabelCounters")] pub label_counters: LabelCounters, /// <p>Configuration information for automated data labeling.</p> #[serde(rename = "LabelingJobAlgorithmsConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_algorithms_config: Option<LabelingJobAlgorithmsConfig>, /// <p>The Amazon Resource Name (ARN) of the labeling job.</p> #[serde(rename = "LabelingJobArn")] pub labeling_job_arn: String, /// <p>The name assigned to the labeling job when it was created.</p> #[serde(rename = "LabelingJobName")] pub labeling_job_name: String, /// <p>The location of the output produced by the labeling job.</p> #[serde(rename = "LabelingJobOutput")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_output: Option<LabelingJobOutput>, /// <p>The processing status of the labeling job. </p> #[serde(rename = "LabelingJobStatus")] pub labeling_job_status: String, /// <p>The date and time that the labeling job was last updated.</p> #[serde(rename = "LastModifiedTime")] pub last_modified_time: f64, /// <p>The location of the job's output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.</p> #[serde(rename = "OutputConfig")] pub output_config: LabelingJobOutputConfig, /// <p>The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling.</p> #[serde(rename = "RoleArn")] pub role_arn: String, /// <p>A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.</p> #[serde(rename = "StoppingConditions")] #[serde(skip_serializing_if = "Option::is_none")] pub stopping_conditions: Option<LabelingJobStoppingConditions>, /// <p>An array of key/value pairs. For more information, see <a href="http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>.</p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeModelInput { /// <p>The name of the model.</p> #[serde(rename = "ModelName")] pub model_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeModelOutput { /// <p>The containers in the inference pipeline.</p> #[serde(rename = "Containers")] #[serde(skip_serializing_if = "Option::is_none")] pub containers: Option<Vec<ContainerDefinition>>, /// <p>A timestamp that shows when the model was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p><p>If <code>True</code>, no inbound or outbound network calls can be made to or from the model container.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p> #[serde(rename = "EnableNetworkIsolation")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_network_isolation: Option<bool>, /// <p>The Amazon Resource Name (ARN) of the IAM role that you specified for the model.</p> #[serde(rename = "ExecutionRoleArn")] pub execution_role_arn: String, /// <p>The Amazon Resource Name (ARN) of the model.</p> #[serde(rename = "ModelArn")] pub model_arn: String, /// <p>Name of the Amazon SageMaker model.</p> #[serde(rename = "ModelName")] pub model_name: String, /// <p>The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production. </p> #[serde(rename = "PrimaryContainer")] #[serde(skip_serializing_if = "Option::is_none")] pub primary_container: Option<ContainerDefinition>, /// <p>A <a>VpcConfig</a> object that specifies the VPC that this model has access to. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html">Protect Endpoints by Using an Amazon Virtual Private Cloud</a> </p> #[serde(rename = "VpcConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub vpc_config: Option<VpcConfig>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeModelPackageInput { /// <p>The name of the model package to describe.</p> #[serde(rename = "ModelPackageName")] pub model_package_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeModelPackageOutput { /// <p>Whether the model package is certified for listing on AWS Marketplace.</p> #[serde(rename = "CertifyForMarketplace")] #[serde(skip_serializing_if = "Option::is_none")] pub certify_for_marketplace: Option<bool>, /// <p>A timestamp specifying when the model package was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>Details about inference jobs that can be run with models based on this model package.</p> #[serde(rename = "InferenceSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub inference_specification: Option<InferenceSpecification>, /// <p>The Amazon Resource Name (ARN) of the model package.</p> #[serde(rename = "ModelPackageArn")] pub model_package_arn: String, /// <p>A brief summary of the model package.</p> #[serde(rename = "ModelPackageDescription")] #[serde(skip_serializing_if = "Option::is_none")] pub model_package_description: Option<String>, /// <p>The name of the model package being described.</p> #[serde(rename = "ModelPackageName")] pub model_package_name: String, /// <p>The current status of the model package.</p> #[serde(rename = "ModelPackageStatus")] pub model_package_status: String, /// <p>Details about the current status of the model package.</p> #[serde(rename = "ModelPackageStatusDetails")] pub model_package_status_details: ModelPackageStatusDetails, /// <p>Details about the algorithm that was used to create the model package.</p> #[serde(rename = "SourceAlgorithmSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub source_algorithm_specification: Option<SourceAlgorithmSpecification>, /// <p>Configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.</p> #[serde(rename = "ValidationSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub validation_specification: Option<ModelPackageValidationSpecification>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeNotebookInstanceInput { /// <p>The name of the notebook instance that you want information about.</p> #[serde(rename = "NotebookInstanceName")] pub notebook_instance_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeNotebookInstanceLifecycleConfigInput { /// <p>The name of the lifecycle configuration to describe.</p> #[serde(rename = "NotebookInstanceLifecycleConfigName")] pub notebook_instance_lifecycle_config_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeNotebookInstanceLifecycleConfigOutput { /// <p>A timestamp that tells when the lifecycle configuration was created.</p> #[serde(rename = "CreationTime")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time: Option<f64>, /// <p>A timestamp that tells when the lifecycle configuration was last modified.</p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the lifecycle configuration.</p> #[serde(rename = "NotebookInstanceLifecycleConfigArn")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_lifecycle_config_arn: Option<String>, /// <p>The name of the lifecycle configuration.</p> #[serde(rename = "NotebookInstanceLifecycleConfigName")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_lifecycle_config_name: Option<String>, /// <p>The shell script that runs only once, when you create a notebook instance.</p> #[serde(rename = "OnCreate")] #[serde(skip_serializing_if = "Option::is_none")] pub on_create: Option<Vec<NotebookInstanceLifecycleHook>>, /// <p>The shell script that runs every time you start a notebook instance, including when you create the notebook instance.</p> #[serde(rename = "OnStart")] #[serde(skip_serializing_if = "Option::is_none")] pub on_start: Option<Vec<NotebookInstanceLifecycleHook>>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeNotebookInstanceOutput { /// <p>A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>.</p> #[serde(rename = "AcceleratorTypes")] #[serde(skip_serializing_if = "Option::is_none")] pub accelerator_types: Option<Vec<String>>, /// <p>An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p> #[serde(rename = "AdditionalCodeRepositories")] #[serde(skip_serializing_if = "Option::is_none")] pub additional_code_repositories: Option<Vec<String>>, /// <p>A timestamp. Use this parameter to return the time when the notebook instance was created</p> #[serde(rename = "CreationTime")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time: Option<f64>, /// <p>The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p> #[serde(rename = "DefaultCodeRepository")] #[serde(skip_serializing_if = "Option::is_none")] pub default_code_repository: Option<String>, /// <p>Describes whether Amazon SageMaker provides internet access to the notebook instance. If this value is set to <i>Disabled</i>, the notebook instance does not have internet access, and cannot connect to Amazon SageMaker training and endpoint services.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access">Notebook Instances Are Internet-Enabled by Default</a>.</p> #[serde(rename = "DirectInternetAccess")] #[serde(skip_serializing_if = "Option::is_none")] pub direct_internet_access: Option<String>, /// <p>If status is <code>Failed</code>, the reason it failed.</p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>The type of ML compute instance running on the notebook instance.</p> #[serde(rename = "InstanceType")] #[serde(skip_serializing_if = "Option::is_none")] pub instance_type: Option<String>, /// <p>The AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance. </p> #[serde(rename = "KmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub kms_key_id: Option<String>, /// <p>A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified. </p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>The network interface IDs that Amazon SageMaker created at the time of creating the instance. </p> #[serde(rename = "NetworkInterfaceId")] #[serde(skip_serializing_if = "Option::is_none")] pub network_interface_id: Option<String>, /// <p>The Amazon Resource Name (ARN) of the notebook instance.</p> #[serde(rename = "NotebookInstanceArn")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_arn: Option<String>, /// <p>Returns the name of a notebook instance lifecycle configuration.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a> </p> #[serde(rename = "NotebookInstanceLifecycleConfigName")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_lifecycle_config_name: Option<String>, /// <p>The name of the Amazon SageMaker notebook instance. </p> #[serde(rename = "NotebookInstanceName")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_name: Option<String>, /// <p>The status of the notebook instance.</p> #[serde(rename = "NotebookInstanceStatus")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_status: Option<String>, /// <p>The Amazon Resource Name (ARN) of the IAM role associated with the instance. </p> #[serde(rename = "RoleArn")] #[serde(skip_serializing_if = "Option::is_none")] pub role_arn: Option<String>, /// <p><p>Whether root access is enabled or disabled for users of the notebook instance.</p> <note> <p>Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.</p> </note></p> #[serde(rename = "RootAccess")] #[serde(skip_serializing_if = "Option::is_none")] pub root_access: Option<String>, /// <p>The IDs of the VPC security groups.</p> #[serde(rename = "SecurityGroups")] #[serde(skip_serializing_if = "Option::is_none")] pub security_groups: Option<Vec<String>>, /// <p>The ID of the VPC subnet.</p> #[serde(rename = "SubnetId")] #[serde(skip_serializing_if = "Option::is_none")] pub subnet_id: Option<String>, /// <p>The URL that you use to connect to the Jupyter notebook that is running in your notebook instance. </p> #[serde(rename = "Url")] #[serde(skip_serializing_if = "Option::is_none")] pub url: Option<String>, /// <p>The size, in GB, of the ML storage volume attached to the notebook instance.</p> #[serde(rename = "VolumeSizeInGB")] #[serde(skip_serializing_if = "Option::is_none")] pub volume_size_in_gb: Option<i64>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeSubscribedWorkteamRequest { /// <p>The Amazon Resource Name (ARN) of the subscribed work team to describe.</p> #[serde(rename = "WorkteamArn")] pub workteam_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeSubscribedWorkteamResponse { /// <p>A <code>Workteam</code> instance that contains information about the work team.</p> #[serde(rename = "SubscribedWorkteam")] pub subscribed_workteam: SubscribedWorkteam, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeTrainingJobRequest { /// <p>The name of the training job.</p> #[serde(rename = "TrainingJobName")] pub training_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeTrainingJobResponse { /// <p>Information about the algorithm used for training, and algorithm metadata. </p> #[serde(rename = "AlgorithmSpecification")] pub algorithm_specification: AlgorithmSpecification, /// <p>A timestamp that indicates when the training job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.</p> #[serde(rename = "EnableInterContainerTrafficEncryption")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_inter_container_traffic_encryption: Option<bool>, /// <p><p>If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose <code>True</code>. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p> #[serde(rename = "EnableNetworkIsolation")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_network_isolation: Option<bool>, /// <p>If the training job failed, the reason it failed. </p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>A collection of <code>MetricData</code> objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.</p> #[serde(rename = "FinalMetricDataList")] #[serde(skip_serializing_if = "Option::is_none")] pub final_metric_data_list: Option<Vec<MetricData>>, /// <p>Algorithm-specific parameters. </p> #[serde(rename = "HyperParameters")] #[serde(skip_serializing_if = "Option::is_none")] pub hyper_parameters: Option<::std::collections::HashMap<String, String>>, /// <p>An array of <code>Channel</code> objects that describes each data input channel. </p> #[serde(rename = "InputDataConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub input_data_config: Option<Vec<Channel>>, /// <p>The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.</p> #[serde(rename = "LabelingJobArn")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_arn: Option<String>, /// <p>A timestamp that indicates when the status of the training job was last modified.</p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>Information about the Amazon S3 location that is configured for storing model artifacts. </p> #[serde(rename = "ModelArtifacts")] pub model_artifacts: ModelArtifacts, /// <p>The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts. </p> #[serde(rename = "OutputDataConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub output_data_config: Option<OutputDataConfig>, /// <p>Resources, including ML compute instances and ML storage volumes, that are configured for model training. </p> #[serde(rename = "ResourceConfig")] pub resource_config: ResourceConfig, /// <p>The AWS Identity and Access Management (IAM) role configured for the training job. </p> #[serde(rename = "RoleArn")] #[serde(skip_serializing_if = "Option::is_none")] pub role_arn: Option<String>, /// <p><p> Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see <code>StatusMessage</code> under <a>SecondaryStatusTransition</a>.</p> <p>Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <important> <p>Valid values for <code>SecondaryStatus</code> are subject to change. </p> </important> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTrainingStack</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul></p> #[serde(rename = "SecondaryStatus")] pub secondary_status: String, /// <p>A history of all of the secondary statuses that the training job has transitioned through.</p> #[serde(rename = "SecondaryStatusTransitions")] #[serde(skip_serializing_if = "Option::is_none")] pub secondary_status_transitions: Option<Vec<SecondaryStatusTransition>>, /// <p>The condition under which to stop the training job. </p> #[serde(rename = "StoppingCondition")] pub stopping_condition: StoppingCondition, /// <p>Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of <code>TrainingStartTime</code> and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.</p> #[serde(rename = "TrainingEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub training_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the training job.</p> #[serde(rename = "TrainingJobArn")] pub training_job_arn: String, /// <p> Name of the model training job. </p> #[serde(rename = "TrainingJobName")] pub training_job_name: String, /// <p>The status of the training job.</p> <p>Amazon SageMaker provides the following training job statuses:</p> <ul> <li> <p> <code>InProgress</code> - The training is in progress.</p> </li> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> <li> <p> <code>Failed</code> - The training job has failed. To see the reason for the failure, see the <code>FailureReason</code> field in the response to a <code>DescribeTrainingJobResponse</code> call.</p> </li> <li> <p> <code>Stopping</code> - The training job is stopping.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> <p>For more detailed information, see <code>SecondaryStatus</code>. </p> #[serde(rename = "TrainingJobStatus")] pub training_job_status: String, /// <p>Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of <code>TrainingEndTime</code>. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.</p> #[serde(rename = "TrainingStartTime")] #[serde(skip_serializing_if = "Option::is_none")] pub training_start_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.</p> #[serde(rename = "TuningJobArn")] #[serde(skip_serializing_if = "Option::is_none")] pub tuning_job_arn: Option<String>, /// <p>A <a>VpcConfig</a> object that specifies the VPC that this training job has access to. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p> #[serde(rename = "VpcConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub vpc_config: Option<VpcConfig>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeTransformJobRequest { /// <p>The name of the transform job that you want to view details of.</p> #[serde(rename = "TransformJobName")] pub transform_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeTransformJobResponse { /// <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i/> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. </p> <p>To enable the batch strategy, you must set <code>SplitType</code> to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p> #[serde(rename = "BatchStrategy")] #[serde(skip_serializing_if = "Option::is_none")] pub batch_strategy: Option<String>, /// <p>A timestamp that shows when the transform Job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.</p> #[serde(rename = "Environment")] #[serde(skip_serializing_if = "Option::is_none")] pub environment: Option<::std::collections::HashMap<String, String>>, /// <p>If the transform job failed, <code>FailureReason</code> describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/logging-cloudwatch.html">Log Amazon SageMaker Events with Amazon CloudWatch</a>.</p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.</p> #[serde(rename = "LabelingJobArn")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_arn: Option<String>, /// <p>The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.</p> #[serde(rename = "MaxConcurrentTransforms")] #[serde(skip_serializing_if = "Option::is_none")] pub max_concurrent_transforms: Option<i64>, /// <p>The maximum payload size, in MB, used in the transform job.</p> #[serde(rename = "MaxPayloadInMB")] #[serde(skip_serializing_if = "Option::is_none")] pub max_payload_in_mb: Option<i64>, /// <p>The name of the model used in the transform job.</p> #[serde(rename = "ModelName")] pub model_name: String, /// <p>Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of <code>TransformStartTime</code>.</p> #[serde(rename = "TransformEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub transform_end_time: Option<f64>, /// <p>Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p> #[serde(rename = "TransformInput")] pub transform_input: TransformInput, /// <p>The Amazon Resource Name (ARN) of the transform job.</p> #[serde(rename = "TransformJobArn")] pub transform_job_arn: String, /// <p>The name of the transform job.</p> #[serde(rename = "TransformJobName")] pub transform_job_name: String, /// <p>The status of the transform job. If the transform job failed, the reason is returned in the <code>FailureReason</code> field.</p> #[serde(rename = "TransformJobStatus")] pub transform_job_status: String, /// <p>Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> #[serde(rename = "TransformOutput")] #[serde(skip_serializing_if = "Option::is_none")] pub transform_output: Option<TransformOutput>, /// <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p> #[serde(rename = "TransformResources")] pub transform_resources: TransformResources, /// <p>Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of <code>TransformEndTime</code>.</p> #[serde(rename = "TransformStartTime")] #[serde(skip_serializing_if = "Option::is_none")] pub transform_start_time: Option<f64>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DescribeWorkteamRequest { /// <p>The name of the work team to return a description of.</p> #[serde(rename = "WorkteamName")] pub workteam_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct DescribeWorkteamResponse { /// <p>A <code>Workteam</code> instance that contains information about the work team. </p> #[serde(rename = "Workteam")] pub workteam: Workteam, } /// <p>Specifies weight and capacity values for a production variant.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct DesiredWeightAndCapacity { /// <p>The variant's capacity.</p> #[serde(rename = "DesiredInstanceCount")] #[serde(skip_serializing_if = "Option::is_none")] pub desired_instance_count: Option<i64>, /// <p>The variant's weight.</p> #[serde(rename = "DesiredWeight")] #[serde(skip_serializing_if = "Option::is_none")] pub desired_weight: Option<f32>, /// <p>The name of the variant to update.</p> #[serde(rename = "VariantName")] pub variant_name: String, } /// <p>Provides summary information for an endpoint configuration.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct EndpointConfigSummary { /// <p>A timestamp that shows when the endpoint configuration was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The Amazon Resource Name (ARN) of the endpoint configuration.</p> #[serde(rename = "EndpointConfigArn")] pub endpoint_config_arn: String, /// <p>The name of the endpoint configuration.</p> #[serde(rename = "EndpointConfigName")] pub endpoint_config_name: String, } /// <p>Provides summary information for an endpoint.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct EndpointSummary { /// <p>A timestamp that shows when the endpoint was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The Amazon Resource Name (ARN) of the endpoint.</p> #[serde(rename = "EndpointArn")] pub endpoint_arn: String, /// <p>The name of the endpoint.</p> #[serde(rename = "EndpointName")] pub endpoint_name: String, /// <p>The status of the endpoint.</p> <ul> <li> <p> <code>OutOfService</code>: Endpoint is not available to take incoming requests.</p> </li> <li> <p> <code>Creating</code>: <a>CreateEndpoint</a> is executing.</p> </li> <li> <p> <code>Updating</code>: <a>UpdateEndpoint</a> or <a>UpdateEndpointWeightsAndCapacities</a> is executing.</p> </li> <li> <p> <code>SystemUpdating</code>: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.</p> </li> <li> <p> <code>RollingBack</code>: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an <code>InService</code> status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an <a>UpdateEndpointWeightsAndCapacities</a> call or when the <a>UpdateEndpointWeightsAndCapacities</a> operation is called explicitly.</p> </li> <li> <p> <code>InService</code>: Endpoint is available to process incoming requests.</p> </li> <li> <p> <code>Deleting</code>: <a>DeleteEndpoint</a> is executing.</p> </li> <li> <p> <code>Failed</code>: Endpoint could not be created, updated, or re-scaled. Use <a>DescribeEndpointOutput$FailureReason</a> for information about the failure. <a>DeleteEndpoint</a> is the only operation that can be performed on a failed endpoint.</p> </li> </ul> <p>To get a list of endpoints with a specified status, use the <a>ListEndpointsInput$StatusEquals</a> filter.</p> #[serde(rename = "EndpointStatus")] pub endpoint_status: String, /// <p>A timestamp that shows when the endpoint was last modified.</p> #[serde(rename = "LastModifiedTime")] pub last_modified_time: f64, } /// <p><p>A conditional statement for a search expression that includes a Boolean operator, a resource property, and a value.</p> <p>If you don't specify an <code>Operator</code> and a <code>Value</code>, the filter searches for only the specified property. For example, defining a <code>Filter</code> for the <code>FailureReason</code> for the <code>TrainingJob</code> <code>Resource</code> searches for training job objects that have a value in the <code>FailureReason</code> field.</p> <p>If you specify a <code>Value</code>, but not an <code>Operator</code>, Amazon SageMaker uses the equals operator as the default.</p> <p>In search, there are several property types:</p> <dl> <dt>Metrics</dt> <dd> <p>To define a metric filter, enter a value using the form <code>"Metrics.<name>"</code>, where <code><name></code> is a metric name. For example, the following filter searches for training jobs with an <code>"accuracy"</code> metric greater than <code>"0.9"</code>:</p> <p> <code>{</code> </p> <p> <code>"Name": "Metrics.accuracy",</code> </p> <p> <code>"Operator": "GREATER<em>THAN",</code> </p> <p> <code>"Value": "0.9"</code> </p> <p> <code>}</code> </p> </dd> <dt>HyperParameters</dt> <dd> <p>To define a hyperparameter filter, enter a value with the form <code>"HyperParameters.<name>"</code>. Decimal hyperparameter values are treated as a decimal in a comparison if the specified <code>Value</code> is also a decimal value. If the specified <code>Value</code> is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a <code>"learning</em>rate"</code> hyperparameter that is less than <code>"0.5"</code>:</p> <p> <code> {</code> </p> <p> <code> "Name": "HyperParameters.learning<em>rate",</code> </p> <p> <code> "Operator": "LESS</em>THAN",</code> </p> <p> <code> "Value": "0.5"</code> </p> <p> <code> }</code> </p> </dd> <dt>Tags</dt> <dd> <p>To define a tag filter, enter a value with the form <code>"Tags.<key>"</code>.</p> </dd> </dl></p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct Filter { /// <p>A property name. For example, <code>TrainingJobName</code>. For the list of valid property names returned in a search result for each supported resource, see <a>TrainingJob</a> properties. You must specify a valid property name for the resource.</p> #[serde(rename = "Name")] pub name: String, /// <p>A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:</p> <dl> <dt>Equals</dt> <dd> <p>The specified resource in <code>Name</code> equals the specified <code>Value</code>.</p> </dd> <dt>NotEquals</dt> <dd> <p>The specified resource in <code>Name</code> does not equal the specified <code>Value</code>.</p> </dd> <dt>GreaterThan</dt> <dd> <p>The specified resource in <code>Name</code> is greater than the specified <code>Value</code>. Not supported for text-based properties.</p> </dd> <dt>GreaterThanOrEqualTo</dt> <dd> <p>The specified resource in <code>Name</code> is greater than or equal to the specified <code>Value</code>. Not supported for text-based properties.</p> </dd> <dt>LessThan</dt> <dd> <p>The specified resource in <code>Name</code> is less than the specified <code>Value</code>. Not supported for text-based properties.</p> </dd> <dt>LessThanOrEqualTo</dt> <dd> <p>The specified resource in <code>Name</code> is less than or equal to the specified <code>Value</code>. Not supported for text-based properties.</p> </dd> <dt>Contains</dt> <dd> <p>Only supported for text-based properties. The word-list of the property contains the specified <code>Value</code>.</p> </dd> </dl> <p>If you have specified a filter <code>Value</code>, the default is <code>Equals</code>.</p> #[serde(rename = "Operator")] #[serde(skip_serializing_if = "Option::is_none")] pub operator: Option<String>, /// <p>A value used with <code>Resource</code> and <code>Operator</code> to determine if objects satisfy the filter's condition. For numerical properties, <code>Value</code> must be an integer or floating-point decimal. For timestamp properties, <code>Value</code> must be an ISO 8601 date-time string of the following format: <code>YYYY-mm-dd'T'HH:MM:SS</code>.</p> #[serde(rename = "Value")] #[serde(skip_serializing_if = "Option::is_none")] pub value: Option<String>, } /// <p>Shows the final value for the objective metric for a training job that was launched by a hyperparameter tuning job. You define the objective metric in the <code>HyperParameterTuningJobObjective</code> parameter of <a>HyperParameterTuningJobConfig</a>.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct FinalHyperParameterTuningJobObjectiveMetric { /// <p>The name of the objective metric.</p> #[serde(rename = "MetricName")] pub metric_name: String, /// <p>Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.</p> #[serde(rename = "Type")] #[serde(skip_serializing_if = "Option::is_none")] pub type_: Option<String>, /// <p>The value of the objective metric.</p> #[serde(rename = "Value")] pub value: f32, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct GetSearchSuggestionsRequest { /// <p>The name of the Amazon SageMaker resource to Search for. The only valid <code>Resource</code> value is <code>TrainingJob</code>.</p> #[serde(rename = "Resource")] pub resource: String, /// <p>Limits the property names that are included in the response.</p> #[serde(rename = "SuggestionQuery")] #[serde(skip_serializing_if = "Option::is_none")] pub suggestion_query: Option<SuggestionQuery>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct GetSearchSuggestionsResponse { /// <p>A list of property names for a <code>Resource</code> that match a <code>SuggestionQuery</code>.</p> #[serde(rename = "PropertyNameSuggestions")] #[serde(skip_serializing_if = "Option::is_none")] pub property_name_suggestions: Option<Vec<PropertyNameSuggestion>>, } /// <p>Specifies configuration details for a Git repository in your AWS account.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct GitConfig { /// <p>The default branch for the Git repository.</p> #[serde(rename = "Branch")] #[serde(skip_serializing_if = "Option::is_none")] pub branch: Option<String>, /// <p>The URL where the Git repository is located.</p> #[serde(rename = "RepositoryUrl")] pub repository_url: String, /// <p>The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of <code>AWSCURRENT</code> and must be in the following format:</p> <p> <code>{"username": <i>UserName</i>, "password": <i>Password</i>}</code> </p> #[serde(rename = "SecretArn")] #[serde(skip_serializing_if = "Option::is_none")] pub secret_arn: Option<String>, } /// <p>Specifies configuration details for a Git repository when the repository is updated.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct GitConfigForUpdate { /// <p>The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of <code>AWSCURRENT</code> and must be in the following format:</p> <p> <code>{"username": <i>UserName</i>, "password": <i>Password</i>}</code> </p> #[serde(rename = "SecretArn")] #[serde(skip_serializing_if = "Option::is_none")] pub secret_arn: Option<String>, } /// <p>Information required for human workers to complete a labeling task.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct HumanTaskConfig { /// <p>Configures how labels are consolidated across human workers.</p> #[serde(rename = "AnnotationConsolidationConfig")] pub annotation_consolidation_config: AnnotationConsolidationConfig, /// <p>Defines the maximum number of data objects that can be labeled by human workers at the same time. Each object may have more than one worker at one time.</p> #[serde(rename = "MaxConcurrentTaskCount")] #[serde(skip_serializing_if = "Option::is_none")] pub max_concurrent_task_count: Option<i64>, /// <p>The number of human workers that will label an object. </p> #[serde(rename = "NumberOfHumanWorkersPerDataObject")] pub number_of_human_workers_per_data_object: i64, /// <p><p>The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.</p> <p>For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:</p> <p> <b>US East (Northern Virginia) (us-east-1):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>US East (Ohio) (us-east-2):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>US West (Oregon) (us-west-2):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>EU (Ireland) (eu-west-1):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>Asia Pacific (Tokyo (ap-northeast-1):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>Asia Pacific (Sydney (ap-southeast-1):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass</code> </p> </li> </ul></p> #[serde(rename = "PreHumanTaskLambdaArn")] pub pre_human_task_lambda_arn: String, /// <p>The price that you pay for each task performed by a public worker.</p> #[serde(rename = "PublicWorkforceTaskPrice")] #[serde(skip_serializing_if = "Option::is_none")] pub public_workforce_task_price: Option<PublicWorkforceTaskPrice>, /// <p>The length of time that a task remains available for labelling by human workers.</p> #[serde(rename = "TaskAvailabilityLifetimeInSeconds")] #[serde(skip_serializing_if = "Option::is_none")] pub task_availability_lifetime_in_seconds: Option<i64>, /// <p>A description of the task for your human workers.</p> #[serde(rename = "TaskDescription")] pub task_description: String, /// <p>Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.</p> #[serde(rename = "TaskKeywords")] #[serde(skip_serializing_if = "Option::is_none")] pub task_keywords: Option<Vec<String>>, /// <p>The amount of time that a worker has to complete a task.</p> #[serde(rename = "TaskTimeLimitInSeconds")] pub task_time_limit_in_seconds: i64, /// <p>A title for the task for your human workers.</p> #[serde(rename = "TaskTitle")] pub task_title: String, /// <p>Information about the user interface that workers use to complete the labeling task.</p> #[serde(rename = "UiConfig")] pub ui_config: UiConfig, /// <p>The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.</p> #[serde(rename = "WorkteamArn")] pub workteam_arn: String, } /// <p>Specifies which training algorithm to use for training jobs that a hyperparameter tuning job launches and the metrics to monitor.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct HyperParameterAlgorithmSpecification { /// <p>The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for <code>TrainingImage</code>.</p> #[serde(rename = "AlgorithmName")] #[serde(skip_serializing_if = "Option::is_none")] pub algorithm_name: Option<String>, /// <p>An array of <a>MetricDefinition</a> objects that specify the metrics that the algorithm emits.</p> #[serde(rename = "MetricDefinitions")] #[serde(skip_serializing_if = "Option::is_none")] pub metric_definitions: Option<Vec<MetricDefinition>>, /// <p> The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Algorithms Provided by Amazon SageMaker: Common Parameters</a>. Amazon SageMaker supports both <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code> image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p> #[serde(rename = "TrainingImage")] #[serde(skip_serializing_if = "Option::is_none")] pub training_image: Option<String>, /// <p>The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container. </p> <p>If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information.</p> <p/> <p>For more information about input modes, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> #[serde(rename = "TrainingInputMode")] pub training_input_mode: String, } /// <p>Defines a hyperparameter to be used by an algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct HyperParameterSpecification { /// <p>The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.</p> #[serde(rename = "DefaultValue")] #[serde(skip_serializing_if = "Option::is_none")] pub default_value: Option<String>, /// <p>A brief description of the hyperparameter.</p> #[serde(rename = "Description")] #[serde(skip_serializing_if = "Option::is_none")] pub description: Option<String>, /// <p>Indicates whether this hyperparameter is required.</p> #[serde(rename = "IsRequired")] #[serde(skip_serializing_if = "Option::is_none")] pub is_required: Option<bool>, /// <p>Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.</p> #[serde(rename = "IsTunable")] #[serde(skip_serializing_if = "Option::is_none")] pub is_tunable: Option<bool>, /// <p>The name of this hyperparameter. The name must be unique.</p> #[serde(rename = "Name")] pub name: String, /// <p>The allowed range for this hyperparameter.</p> #[serde(rename = "Range")] #[serde(skip_serializing_if = "Option::is_none")] pub range: Option<ParameterRange>, /// <p>The type of this hyperparameter. The valid types are <code>Integer</code>, <code>Continuous</code>, <code>Categorical</code>, and <code>FreeText</code>.</p> #[serde(rename = "Type")] pub type_: String, } /// <p>Defines the training jobs launched by a hyperparameter tuning job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct HyperParameterTrainingJobDefinition { /// <p>The <a>HyperParameterAlgorithmSpecification</a> object that specifies the resource algorithm to use for the training jobs that the tuning job launches.</p> #[serde(rename = "AlgorithmSpecification")] pub algorithm_specification: HyperParameterAlgorithmSpecification, /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.</p> #[serde(rename = "EnableInterContainerTrafficEncryption")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_inter_container_traffic_encryption: Option<bool>, /// <p><p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p> #[serde(rename = "EnableNetworkIsolation")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_network_isolation: Option<bool>, /// <p>An array of <a>Channel</a> objects that specify the input for the training jobs that the tuning job launches.</p> #[serde(rename = "InputDataConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub input_data_config: Option<Vec<Channel>>, /// <p>Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.</p> #[serde(rename = "OutputDataConfig")] pub output_data_config: OutputDataConfig, /// <p>The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.</p> <p>Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p> #[serde(rename = "ResourceConfig")] pub resource_config: ResourceConfig, /// <p>The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.</p> #[serde(rename = "RoleArn")] pub role_arn: String, /// <p>Specifies the values of hyperparameters that do not change for the tuning job.</p> #[serde(rename = "StaticHyperParameters")] #[serde(skip_serializing_if = "Option::is_none")] pub static_hyper_parameters: Option<::std::collections::HashMap<String, String>>, /// <p>Sets a maximum duration for the training jobs that the tuning job launches. Use this parameter to limit model training costs. </p> <p>To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal. This delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts.</p> <p>When Amazon SageMaker terminates a job because the stopping condition has been met, training algorithms provided by Amazon SageMaker save the intermediate results of the job.</p> #[serde(rename = "StoppingCondition")] pub stopping_condition: StoppingCondition, /// <p>The <a>VpcConfig</a> object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p> #[serde(rename = "VpcConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub vpc_config: Option<VpcConfig>, } /// <p>Specifies summary information about a training job.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct HyperParameterTrainingJobSummary { /// <p>The date and time that the training job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The reason that the training job failed. </p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>The <a>FinalHyperParameterTuningJobObjectiveMetric</a> object that specifies the value of the objective metric of the tuning job that launched this training job.</p> #[serde(rename = "FinalHyperParameterTuningJobObjectiveMetric")] #[serde(skip_serializing_if = "Option::is_none")] pub final_hyper_parameter_tuning_job_objective_metric: Option<FinalHyperParameterTuningJobObjectiveMetric>, /// <p><p>The status of the objective metric for the training job:</p> <ul> <li> <p>Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.</p> </li> </ul> <ul> <li> <p>Pending: The training job is in progress and evaluation of its final objective metric is pending.</p> </li> </ul> <ul> <li> <p>Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.</p> </li> </ul></p> #[serde(rename = "ObjectiveStatus")] #[serde(skip_serializing_if = "Option::is_none")] pub objective_status: Option<String>, /// <p>Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of <code>TrainingStartTime</code> and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.</p> #[serde(rename = "TrainingEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub training_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the training job.</p> #[serde(rename = "TrainingJobArn")] pub training_job_arn: String, /// <p>The name of the training job.</p> #[serde(rename = "TrainingJobName")] pub training_job_name: String, /// <p>The status of the training job.</p> #[serde(rename = "TrainingJobStatus")] pub training_job_status: String, /// <p>The date and time that the training job started.</p> #[serde(rename = "TrainingStartTime")] #[serde(skip_serializing_if = "Option::is_none")] pub training_start_time: Option<f64>, /// <p>A list of the hyperparameters for which you specified ranges to search.</p> #[serde(rename = "TunedHyperParameters")] pub tuned_hyper_parameters: ::std::collections::HashMap<String, String>, /// <p>The HyperParameter tuning job that launched the training job.</p> #[serde(rename = "TuningJobName")] #[serde(skip_serializing_if = "Option::is_none")] pub tuning_job_name: Option<String>, } /// <p>Configures a hyperparameter tuning job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct HyperParameterTuningJobConfig { /// <p>The <a>HyperParameterTuningJobObjective</a> object that specifies the objective metric for this tuning job.</p> #[serde(rename = "HyperParameterTuningJobObjective")] #[serde(skip_serializing_if = "Option::is_none")] pub hyper_parameter_tuning_job_objective: Option<HyperParameterTuningJobObjective>, /// <p>The <a>ParameterRanges</a> object that specifies the ranges of hyperparameters that this tuning job searches.</p> #[serde(rename = "ParameterRanges")] #[serde(skip_serializing_if = "Option::is_none")] pub parameter_ranges: Option<ParameterRanges>, /// <p>The <a>ResourceLimits</a> object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.</p> #[serde(rename = "ResourceLimits")] pub resource_limits: ResourceLimits, /// <p>Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search stategy, set this to <code>Bayesian</code>. To randomly search, set it to <code>Random</code>. For information about search strategies, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How Hyperparameter Tuning Works</a>.</p> #[serde(rename = "Strategy")] pub strategy: String, /// <p><p>Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is <code>OFF</code>):</p> <dl> <dt>OFF</dt> <dd> <p>Training jobs launched by the hyperparameter tuning job do not use early stopping.</p> </dd> <dt>AUTO</dt> <dd> <p>Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html">Stop Training Jobs Early</a>.</p> </dd> </dl></p> #[serde(rename = "TrainingJobEarlyStoppingType")] #[serde(skip_serializing_if = "Option::is_none")] pub training_job_early_stopping_type: Option<String>, } /// <p>Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the <code>Type</code> parameter.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct HyperParameterTuningJobObjective { /// <p>The name of the metric to use for the objective metric.</p> #[serde(rename = "MetricName")] pub metric_name: String, /// <p>Whether to minimize or maximize the objective metric.</p> #[serde(rename = "Type")] pub type_: String, } /// <p>Provides summary information about a hyperparameter tuning job.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct HyperParameterTuningJobSummary { /// <p>The date and time that the tuning job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The date and time that the tuning job ended.</p> #[serde(rename = "HyperParameterTuningEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub hyper_parameter_tuning_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the tuning job.</p> #[serde(rename = "HyperParameterTuningJobArn")] pub hyper_parameter_tuning_job_arn: String, /// <p>The name of the tuning job.</p> #[serde(rename = "HyperParameterTuningJobName")] pub hyper_parameter_tuning_job_name: String, /// <p>The status of the tuning job.</p> #[serde(rename = "HyperParameterTuningJobStatus")] pub hyper_parameter_tuning_job_status: String, /// <p>The date and time that the tuning job was modified.</p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>The <a>ObjectiveStatusCounters</a> object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.</p> #[serde(rename = "ObjectiveStatusCounters")] pub objective_status_counters: ObjectiveStatusCounters, /// <p>The <a>ResourceLimits</a> object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.</p> #[serde(rename = "ResourceLimits")] #[serde(skip_serializing_if = "Option::is_none")] pub resource_limits: Option<ResourceLimits>, /// <p>Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to use for each iteration. Currently, the only valid value is Bayesian.</p> #[serde(rename = "Strategy")] pub strategy: String, /// <p>The <a>TrainingJobStatusCounters</a> object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.</p> #[serde(rename = "TrainingJobStatusCounters")] pub training_job_status_counters: TrainingJobStatusCounters, } /// <p><p>Specifies the configuration for a hyperparameter tuning job that uses one or more previous hyperparameter tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p> <p>All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric, and the training job that performs the best is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.</p> <note> <p>All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.</p> </note></p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct HyperParameterTuningJobWarmStartConfig { /// <p>An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html">Using a Previous Hyperparameter Tuning Job as a Starting Point</a>.</p> <p>Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.</p> #[serde(rename = "ParentHyperParameterTuningJobs")] pub parent_hyper_parameter_tuning_jobs: Vec<ParentHyperParameterTuningJob>, /// <p><p>Specifies one of the following:</p> <dl> <dt>IDENTICAL<em>DATA</em>AND<em>ALGORITHM</dt> <dd> <p>The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.</p> </dd> <dt>TRANSFER</em>LEARNING</dt> <dd> <p>The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.</p> </dd> </dl></p> #[serde(rename = "WarmStartType")] pub warm_start_type: String, } /// <p>Defines how to perform inference generation after a training job is run.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct InferenceSpecification { /// <p>The Amazon ECR registry path of the Docker image that contains the inference code.</p> #[serde(rename = "Containers")] pub containers: Vec<ModelPackageContainerDefinition>, /// <p>The supported MIME types for the input data.</p> #[serde(rename = "SupportedContentTypes")] pub supported_content_types: Vec<String>, /// <p>A list of the instance types that are used to generate inferences in real-time.</p> #[serde(rename = "SupportedRealtimeInferenceInstanceTypes")] pub supported_realtime_inference_instance_types: Vec<String>, /// <p>The supported MIME types for the output data.</p> #[serde(rename = "SupportedResponseMIMETypes")] pub supported_response_mime_types: Vec<String>, /// <p>A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.</p> #[serde(rename = "SupportedTransformInstanceTypes")] pub supported_transform_instance_types: Vec<String>, } /// <p>Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct InputConfig { /// <p><p>Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p> <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using the console, <code>{"input":[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI, <code>{"input":[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console, <code>{"data1": [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI, <code>{"data1": [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p> <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li> <li> <p>If using the CLI, <code>{"data":[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console, <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li> <li> <p>If using the CLI, <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.</p> <ul> <li> <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the console, <code>{"input0":[1,3,224,224]}</code> </p> </li> <li> <p>If using the CLI, <code>{"input0":[1,3,224,224]}</code> </p> </li> </ul> </li> <li> <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li> <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p> </li> <li> <p>If using the CLI, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li> </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not needed.</p> </li> </ul></p> #[serde(rename = "DataInputConfig")] pub data_input_config: String, /// <p>Identifies the framework in which the model was trained. For example: TENSORFLOW.</p> #[serde(rename = "Framework")] pub framework: String, /// <p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p> #[serde(rename = "S3Uri")] pub s3_uri: String, } /// <p>For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct IntegerParameterRange { /// <p>The maximum value of the hyperparameter to search.</p> #[serde(rename = "MaxValue")] pub max_value: String, /// <p>The minimum value of the hyperparameter to search.</p> #[serde(rename = "MinValue")] pub min_value: String, /// <p>The name of the hyperparameter to search.</p> #[serde(rename = "Name")] pub name: String, /// <p><p>The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see <a href="http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.</p> </dd> <dt>Logarithmic</dt> <dd> <p>Hyperparemeter tuning searches the values in the hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling works only for ranges that have only values greater than 0.</p> </dd> </dl></p> #[serde(rename = "ScalingType")] #[serde(skip_serializing_if = "Option::is_none")] pub scaling_type: Option<String>, } /// <p>Defines the possible values for an integer hyperparameter.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct IntegerParameterRangeSpecification { /// <p>The maximum integer value allowed.</p> #[serde(rename = "MaxValue")] pub max_value: String, /// <p>The minimum integer value allowed.</p> #[serde(rename = "MinValue")] pub min_value: String, } /// <p>Provides a breakdown of the number of objects labeled.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct LabelCounters { /// <p>The total number of objects that could not be labeled due to an error.</p> #[serde(rename = "FailedNonRetryableError")] #[serde(skip_serializing_if = "Option::is_none")] pub failed_non_retryable_error: Option<i64>, /// <p>The total number of objects labeled by a human worker.</p> #[serde(rename = "HumanLabeled")] #[serde(skip_serializing_if = "Option::is_none")] pub human_labeled: Option<i64>, /// <p>The total number of objects labeled by automated data labeling.</p> #[serde(rename = "MachineLabeled")] #[serde(skip_serializing_if = "Option::is_none")] pub machine_labeled: Option<i64>, /// <p>The total number of objects labeled.</p> #[serde(rename = "TotalLabeled")] #[serde(skip_serializing_if = "Option::is_none")] pub total_labeled: Option<i64>, /// <p>The total number of objects not yet labeled.</p> #[serde(rename = "Unlabeled")] #[serde(skip_serializing_if = "Option::is_none")] pub unlabeled: Option<i64>, } /// <p>Provides counts for human-labeled tasks in the labeling job.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct LabelCountersForWorkteam { /// <p>The total number of data objects labeled by a human worker.</p> #[serde(rename = "HumanLabeled")] #[serde(skip_serializing_if = "Option::is_none")] pub human_labeled: Option<i64>, /// <p>The total number of data objects that need to be labeled by a human worker.</p> #[serde(rename = "PendingHuman")] #[serde(skip_serializing_if = "Option::is_none")] pub pending_human: Option<i64>, /// <p>The total number of tasks in the labeling job.</p> #[serde(rename = "Total")] #[serde(skip_serializing_if = "Option::is_none")] pub total: Option<i64>, } /// <p>Provides configuration information for auto-labeling of your data objects. A <code>LabelingJobAlgorithmsConfig</code> object must be supplied in order to use auto-labeling.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct LabelingJobAlgorithmsConfig { /// <p>At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon Resource Nam (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here. </p> #[serde(rename = "InitialActiveLearningModelArn")] #[serde(skip_serializing_if = "Option::is_none")] pub initial_active_learning_model_arn: Option<String>, /// <p><p>Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:</p> <ul> <li> <p> <i>Image classification</i> </p> <p> <code>arn:aws:sagemaker:<i>region</i>:027400017018:labeling-job-algorithm-specification/image-classification</code> </p> </li> <li> <p> <i>Text classification</i> </p> <p> <code>arn:aws:sagemaker:<i>region</i>:027400017018:labeling-job-algorithm-specification/text-classification</code> </p> </li> <li> <p> <i>Object detection</i> </p> <p> <code>arn:aws:sagemaker:<i>region</i>:027400017018:labeling-job-algorithm-specification/object-detection</code> </p> </li> </ul></p> #[serde(rename = "LabelingJobAlgorithmSpecificationArn")] pub labeling_job_algorithm_specification_arn: String, /// <p>Provides configuration information for a labeling job.</p> #[serde(rename = "LabelingJobResourceConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_resource_config: Option<LabelingJobResourceConfig>, } /// <p>Attributes of the data specified by the customer. Use these to describe the data to be labeled.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct LabelingJobDataAttributes { /// <p>Declares that your content is free of personally identifiable information or adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.</p> #[serde(rename = "ContentClassifiers")] #[serde(skip_serializing_if = "Option::is_none")] pub content_classifiers: Option<Vec<String>>, } /// <p>Provides information about the location of input data.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct LabelingJobDataSource { /// <p>The Amazon S3 location of the input data objects.</p> #[serde(rename = "S3DataSource")] pub s3_data_source: LabelingJobS3DataSource, } /// <p>Provides summary information for a work team.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct LabelingJobForWorkteamSummary { /// <p>The date and time that the labeling job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>A unique identifier for a labeling job. You can use this to refer to a specific labeling job.</p> #[serde(rename = "JobReferenceCode")] pub job_reference_code: String, /// <p>Provides information about the progress of a labeling job.</p> #[serde(rename = "LabelCounters")] #[serde(skip_serializing_if = "Option::is_none")] pub label_counters: Option<LabelCountersForWorkteam>, /// <p>The name of the labeling job that the work team is assigned to.</p> #[serde(rename = "LabelingJobName")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_name: Option<String>, /// <p>The configured number of workers per data object.</p> #[serde(rename = "NumberOfHumanWorkersPerDataObject")] #[serde(skip_serializing_if = "Option::is_none")] pub number_of_human_workers_per_data_object: Option<i64>, /// <p><p/></p> #[serde(rename = "WorkRequesterAccountId")] pub work_requester_account_id: String, } /// <p>Input configuration information for a labeling job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct LabelingJobInputConfig { /// <p>Attributes of the data specified by the customer.</p> #[serde(rename = "DataAttributes")] #[serde(skip_serializing_if = "Option::is_none")] pub data_attributes: Option<LabelingJobDataAttributes>, /// <p>The location of the input data.</p> #[serde(rename = "DataSource")] pub data_source: LabelingJobDataSource, } /// <p>Specifies the location of the output produced by the labeling job. </p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct LabelingJobOutput { /// <p>The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model trained as part of automated data labeling. </p> #[serde(rename = "FinalActiveLearningModelArn")] #[serde(skip_serializing_if = "Option::is_none")] pub final_active_learning_model_arn: Option<String>, /// <p>The Amazon S3 bucket location of the manifest file for labeled data. </p> #[serde(rename = "OutputDatasetS3Uri")] pub output_dataset_s3_uri: String, } /// <p>Output configuration information for a labeling job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct LabelingJobOutputConfig { /// <p>The AWS Key Management Service ID of the key used to encrypt the output data, if any.</p> #[serde(rename = "KmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub kms_key_id: Option<String>, /// <p>The Amazon S3 location to write output data.</p> #[serde(rename = "S3OutputPath")] pub s3_output_path: String, } /// <p>Provides configuration information for labeling jobs.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct LabelingJobResourceConfig { /// <p>The AWS Key Management Service key ID for the key used to encrypt the output data, if any.</p> #[serde(rename = "VolumeKmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub volume_kms_key_id: Option<String>, } /// <p>The Amazon S3 location of the input data objects.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct LabelingJobS3DataSource { /// <p>The Amazon S3 location of the manifest file that describes the input data objects.</p> #[serde(rename = "ManifestS3Uri")] pub manifest_s3_uri: String, } /// <p>A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct LabelingJobStoppingConditions { /// <p>The maximum number of objects that can be labeled by human workers.</p> #[serde(rename = "MaxHumanLabeledObjectCount")] #[serde(skip_serializing_if = "Option::is_none")] pub max_human_labeled_object_count: Option<i64>, /// <p>The maximum number of input data objects that should be labeled.</p> #[serde(rename = "MaxPercentageOfInputDatasetLabeled")] #[serde(skip_serializing_if = "Option::is_none")] pub max_percentage_of_input_dataset_labeled: Option<i64>, } /// <p>Provides summary information about a labeling job.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct LabelingJobSummary { /// <p>The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html">Annotation Consolidation</a>.</p> #[serde(rename = "AnnotationConsolidationLambdaArn")] #[serde(skip_serializing_if = "Option::is_none")] pub annotation_consolidation_lambda_arn: Option<String>, /// <p>The date and time that the job was created (timestamp).</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>If the <code>LabelingJobStatus</code> field is <code>Failed</code>, this field contains a description of the error.</p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>Input configuration for the labeling job.</p> #[serde(rename = "InputConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub input_config: Option<LabelingJobInputConfig>, /// <p>Counts showing the progress of the labeling job.</p> #[serde(rename = "LabelCounters")] pub label_counters: LabelCounters, /// <p>The Amazon Resource Name (ARN) assigned to the labeling job when it was created.</p> #[serde(rename = "LabelingJobArn")] pub labeling_job_arn: String, /// <p>The name of the labeling job.</p> #[serde(rename = "LabelingJobName")] pub labeling_job_name: String, /// <p>The location of the output produced by the labeling job.</p> #[serde(rename = "LabelingJobOutput")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_output: Option<LabelingJobOutput>, /// <p>The current status of the labeling job. </p> #[serde(rename = "LabelingJobStatus")] pub labeling_job_status: String, /// <p>The date and time that the job was last modified (timestamp).</p> #[serde(rename = "LastModifiedTime")] pub last_modified_time: f64, /// <p>The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.</p> #[serde(rename = "PreHumanTaskLambdaArn")] pub pre_human_task_lambda_arn: String, /// <p>The Amazon Resource Name (ARN) of the work team assigned to the job.</p> #[serde(rename = "WorkteamArn")] pub workteam_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListAlgorithmsInput { /// <p>A filter that returns only algorithms created after the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only algorithms created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>The maximum number of algorithms to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the response to a previous <code>ListAlgorithms</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of algorithms, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The parameter by which to sort the results. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for the results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListAlgorithmsOutput { /// <p>>An array of <code>AlgorithmSummary</code> objects, each of which lists an algorithm.</p> #[serde(rename = "AlgorithmSummaryList")] pub algorithm_summary_list: Vec<AlgorithmSummary>, /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListCodeRepositoriesInput { /// <p>A filter that returns only Git repositories that were created after the specified time.</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only Git repositories that were created before the specified time.</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A filter that returns only Git repositories that were last modified after the specified time.</p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p>A filter that returns only Git repositories that were last modified before the specified time.</p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of Git repositories to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of a <code>ListCodeRepositoriesOutput</code> request was truncated, the response includes a <code>NextToken</code>. To get the next set of Git repositories, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>Name</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListCodeRepositoriesOutput { /// <p><p>Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository: </p> <ul> <li> <p>Name</p> </li> <li> <p>Amazon Resource Name (ARN)</p> </li> <li> <p>Creation time</p> </li> <li> <p>Last modified time</p> </li> <li> <p>Configuration information, including the URL location of the repository and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.</p> </li> </ul></p> #[serde(rename = "CodeRepositorySummaryList")] pub code_repository_summary_list: Vec<CodeRepositorySummary>, /// <p>If the result of a <code>ListCodeRepositoriesOutput</code> request was truncated, the response includes a <code>NextToken</code>. To get the next set of Git repositories, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListCompilationJobsRequest { /// <p>A filter that returns the model compilation jobs that were created after a specified time. </p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns the model compilation jobs that were created before a specified time.</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A filter that returns the model compilation jobs that were modified after a specified time.</p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p>A filter that returns the model compilation jobs that were modified before a specified time.</p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of model compilation jobs to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A filter that returns the model compilation jobs whose name contains a specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of the previous <code>ListCompilationJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of model compilation jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field by which to sort results. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p>A filter that retrieves model compilation jobs with a specific <a>DescribeCompilationJobResponse$CompilationJobStatus</a> status.</p> #[serde(rename = "StatusEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub status_equals: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListCompilationJobsResponse { /// <p>An array of <a>CompilationJobSummary</a> objects, each describing a model compilation job. </p> #[serde(rename = "CompilationJobSummaries")] pub compilation_job_summaries: Vec<CompilationJobSummary>, /// <p>If the response is truncated, Amazon SageMaker returns this <code>NextToken</code>. To retrieve the next set of model compilation jobs, use this token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListEndpointConfigsInput { /// <p>A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only endpoint configurations created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>The maximum number of training jobs to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string. </p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of the previous <code>ListEndpointConfig</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of endpoint configurations, use the token in the next request. </p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Descending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListEndpointConfigsOutput { /// <p>An array of endpoint configurations.</p> #[serde(rename = "EndpointConfigs")] pub endpoint_configs: Vec<EndpointConfigSummary>, /// <p> If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request </p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListEndpointsInput { /// <p>A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only endpoints that were created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p> A filter that returns only endpoints that were modified after the specified timestamp. </p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p> A filter that returns only endpoints that were modified before the specified timestamp. </p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of endpoints to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in endpoint names. This filter returns only endpoints whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of a <code>ListEndpoints</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of endpoints, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>Sorts the list of results. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Descending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p> A filter that returns only endpoints with the specified status.</p> #[serde(rename = "StatusEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub status_equals: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListEndpointsOutput { /// <p> An array or endpoint objects. </p> #[serde(rename = "Endpoints")] pub endpoints: Vec<EndpointSummary>, /// <p> If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request. </p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListHyperParameterTuningJobsRequest { /// <p>A filter that returns only tuning jobs that were created after the specified time.</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only tuning jobs that were created before the specified time.</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A filter that returns only tuning jobs that were modified after the specified time.</p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p>A filter that returns only tuning jobs that were modified before the specified time.</p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of tuning jobs to return. The default value is 10.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of the previous <code>ListHyperParameterTuningJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of tuning jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>Name</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p>A filter that returns only tuning jobs with the specified status.</p> #[serde(rename = "StatusEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub status_equals: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListHyperParameterTuningJobsResponse { /// <p>A list of <a>HyperParameterTuningJobSummary</a> objects that describe the tuning jobs that the <code>ListHyperParameterTuningJobs</code> request returned.</p> #[serde(rename = "HyperParameterTuningJobSummaries")] pub hyper_parameter_tuning_job_summaries: Vec<HyperParameterTuningJobSummary>, /// <p>If the result of this <code>ListHyperParameterTuningJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of tuning jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListLabelingJobsForWorkteamRequest { /// <p>A filter that returns only labeling jobs created after the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only labeling jobs created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A filter the limits jobs to only the ones whose job reference code contains the specified string.</p> #[serde(rename = "JobReferenceCodeContains")] #[serde(skip_serializing_if = "Option::is_none")] pub job_reference_code_contains: Option<String>, /// <p>The maximum number of labeling jobs to return in each page of the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>If the result of the previous <code>ListLabelingJobsForWorkteam</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of labeling jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p>The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.</p> #[serde(rename = "WorkteamArn")] pub workteam_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListLabelingJobsForWorkteamResponse { /// <p>An array of <code>LabelingJobSummary</code> objects, each describing a labeling job.</p> #[serde(rename = "LabelingJobSummaryList")] pub labeling_job_summary_list: Vec<LabelingJobForWorkteamSummary>, /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListLabelingJobsRequest { /// <p>A filter that returns only labeling jobs created after the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only labeling jobs created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A filter that returns only labeling jobs modified after the specified time (timestamp).</p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p>A filter that returns only labeling jobs modified before the specified time (timestamp).</p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of labeling jobs to return in each page of the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of the previous <code>ListLabelingJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of labeling jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p>A filter that retrieves only labeling jobs with a specific status.</p> #[serde(rename = "StatusEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub status_equals: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListLabelingJobsResponse { /// <p>An array of <code>LabelingJobSummary</code> objects, each describing a labeling job.</p> #[serde(rename = "LabelingJobSummaryList")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_summary_list: Option<Vec<LabelingJobSummary>>, /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListModelPackagesInput { /// <p>A filter that returns only model packages created after the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only model packages created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>The maximum number of model packages to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the model package name. This filter returns only model packages whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the response to a previous <code>ListModelPackages</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of model packages, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The parameter by which to sort the results. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for the results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListModelPackagesOutput { /// <p>An array of <code>ModelPackageSummary</code> objects, each of which lists a model package.</p> #[serde(rename = "ModelPackageSummaryList")] pub model_package_summary_list: Vec<ModelPackageSummary>, /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListModelsInput { /// <p>A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only models created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>The maximum number of models to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the training job name. This filter returns only models in the training job whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the response to a previous <code>ListModels</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of models, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>Sorts the list of results. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Descending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListModelsOutput { /// <p>An array of <code>ModelSummary</code> objects, each of which lists a model.</p> #[serde(rename = "Models")] pub models: Vec<ModelSummary>, /// <p> If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request. </p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListNotebookInstanceLifecycleConfigsInput { /// <p>A filter that returns only lifecycle configurations that were created after the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only lifecycle configurations that were created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).</p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p>A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).</p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of lifecycle configurations to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of a <code>ListNotebookInstanceLifecycleConfigs</code> request was truncated, the response includes a <code>NextToken</code>. To get the next set of lifecycle configurations, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>Sorts the list of results. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListNotebookInstanceLifecycleConfigsOutput { /// <p>If the response is truncated, Amazon SageMaker returns this token. To get the next set of lifecycle configurations, use it in the next request. </p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>An array of <code>NotebookInstanceLifecycleConfiguration</code> objects, each listing a lifecycle configuration.</p> #[serde(rename = "NotebookInstanceLifecycleConfigs")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_lifecycle_configs: Option<Vec<NotebookInstanceLifecycleConfigSummary>>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListNotebookInstancesInput { /// <p>A filter that returns only notebook instances with associated with the specified git repository.</p> #[serde(rename = "AdditionalCodeRepositoryEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub additional_code_repository_equals: Option<String>, /// <p>A filter that returns only notebook instances that were created after the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only notebook instances that were created before the specified time (timestamp). </p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.</p> #[serde(rename = "DefaultCodeRepositoryContains")] #[serde(skip_serializing_if = "Option::is_none")] pub default_code_repository_contains: Option<String>, /// <p>A filter that returns only notebook instances that were modified after the specified time (timestamp).</p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p>A filter that returns only notebook instances that were modified before the specified time (timestamp).</p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of notebook instances to return.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p><p> If the previous call to the <code>ListNotebookInstances</code> is truncated, the response includes a <code>NextToken</code>. You can use this token in your subsequent <code>ListNotebookInstances</code> request to fetch the next set of notebook instances. </p> <note> <p>You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request. </p> </note></p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.</p> #[serde(rename = "NotebookInstanceLifecycleConfigNameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_lifecycle_config_name_contains: Option<String>, /// <p>The field to sort results by. The default is <code>Name</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. </p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p>A filter that returns only notebook instances with the specified status.</p> #[serde(rename = "StatusEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub status_equals: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListNotebookInstancesOutput { /// <p>If the response to the previous <code>ListNotebookInstances</code> request was truncated, Amazon SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>An array of <code>NotebookInstanceSummary</code> objects, one for each notebook instance.</p> #[serde(rename = "NotebookInstances")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instances: Option<Vec<NotebookInstanceSummary>>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListSubscribedWorkteamsRequest { /// <p>The maximum number of work teams to return in each page of the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the work team name. This filter returns only work teams whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of the previous <code>ListSubscribedWorkteams</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of labeling jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListSubscribedWorkteamsResponse { /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>An array of <code>Workteam</code> objects, each describing a work team.</p> #[serde(rename = "SubscribedWorkteams")] pub subscribed_workteams: Vec<SubscribedWorkteam>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListTagsInput { /// <p>Maximum number of tags to return.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p> If the response to the previous <code>ListTags</code> request is truncated, Amazon SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request. </p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.</p> #[serde(rename = "ResourceArn")] pub resource_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListTagsOutput { /// <p> If response is truncated, Amazon SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens. </p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>An array of <code>Tag</code> objects, each with a tag key and a value.</p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListTrainingJobsForHyperParameterTuningJobRequest { /// <p>The name of the tuning job whose training jobs you want to list.</p> #[serde(rename = "HyperParameterTuningJobName")] pub hyper_parameter_tuning_job_name: String, /// <p>The maximum number of training jobs to return. The default value is 10.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>If the result of the previous <code>ListTrainingJobsForHyperParameterTuningJob</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>Name</code>.</p> <p>If the value of this field is <code>FinalObjectiveMetricValue</code>, any training jobs that did not return an objective metric are not listed.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p>A filter that returns only training jobs with the specified status.</p> #[serde(rename = "StatusEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub status_equals: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListTrainingJobsForHyperParameterTuningJobResponse { /// <p>If the result of this <code>ListTrainingJobsForHyperParameterTuningJob</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>A list of <a>TrainingJobSummary</a> objects that describe the training jobs that the <code>ListTrainingJobsForHyperParameterTuningJob</code> request returned.</p> #[serde(rename = "TrainingJobSummaries")] pub training_job_summaries: Vec<HyperParameterTrainingJobSummary>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListTrainingJobsRequest { /// <p>A filter that returns only training jobs created after the specified time (timestamp).</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only training jobs created before the specified time (timestamp).</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A filter that returns only training jobs modified after the specified time (timestamp).</p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p>A filter that returns only training jobs modified before the specified time (timestamp).</p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of training jobs to return in the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the training job name. This filter returns only training jobs whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of the previous <code>ListTrainingJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request. </p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p>A filter that retrieves only training jobs with a specific status.</p> #[serde(rename = "StatusEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub status_equals: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListTrainingJobsResponse { /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>An array of <code>TrainingJobSummary</code> objects, each listing a training job.</p> #[serde(rename = "TrainingJobSummaries")] pub training_job_summaries: Vec<TrainingJobSummary>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListTransformJobsRequest { /// <p>A filter that returns only transform jobs created after the specified time.</p> #[serde(rename = "CreationTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_after: Option<f64>, /// <p>A filter that returns only transform jobs created before the specified time.</p> #[serde(rename = "CreationTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time_before: Option<f64>, /// <p>A filter that returns only transform jobs modified after the specified time.</p> #[serde(rename = "LastModifiedTimeAfter")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_after: Option<f64>, /// <p>A filter that returns only transform jobs modified before the specified time.</p> #[serde(rename = "LastModifiedTimeBefore")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time_before: Option<f64>, /// <p>The maximum number of transform jobs to return in the response. The default value is <code>10</code>.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of the previous <code>ListTransformJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of transform jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Descending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, /// <p>A filter that retrieves only transform jobs with a specific status.</p> #[serde(rename = "StatusEquals")] #[serde(skip_serializing_if = "Option::is_none")] pub status_equals: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListTransformJobsResponse { /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>An array of <code>TransformJobSummary</code> objects.</p> #[serde(rename = "TransformJobSummaries")] pub transform_job_summaries: Vec<TransformJobSummary>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct ListWorkteamsRequest { /// <p>The maximum number of work teams to return in each page of the response.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>A string in the work team's name. This filter returns only work teams whose name contains the specified string.</p> #[serde(rename = "NameContains")] #[serde(skip_serializing_if = "Option::is_none")] pub name_contains: Option<String>, /// <p>If the result of the previous <code>ListWorkteams</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of labeling jobs, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>The sort order for results. The default is <code>Ascending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ListWorkteamsResponse { /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>An array of <code>Workteam</code> objects, each describing a work team.</p> #[serde(rename = "Workteams")] pub workteams: Vec<Workteam>, } /// <p>Defines the Amazon Cognito user group that is part of a work team.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct MemberDefinition { /// <p>The Amazon Cognito user group that is part of the work team.</p> #[serde(rename = "CognitoMemberDefinition")] #[serde(skip_serializing_if = "Option::is_none")] pub cognito_member_definition: Option<CognitoMemberDefinition>, } /// <p>The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct MetricData { /// <p>The name of the metric.</p> #[serde(rename = "MetricName")] #[serde(skip_serializing_if = "Option::is_none")] pub metric_name: Option<String>, /// <p>The date and time that the algorithm emitted the metric.</p> #[serde(rename = "Timestamp")] #[serde(skip_serializing_if = "Option::is_none")] pub timestamp: Option<f64>, /// <p>The value of the metric.</p> #[serde(rename = "Value")] #[serde(skip_serializing_if = "Option::is_none")] pub value: Option<f32>, } /// <p>Specifies a metric that the training algorithm writes to <code>stderr</code> or <code>stdout</code>. Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct MetricDefinition { /// <p>The name of the metric.</p> #[serde(rename = "Name")] pub name: String, /// <p>A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html">Defining Objective Metrics</a>.</p> #[serde(rename = "Regex")] pub regex: String, } /// <p>Provides information about the location that is configured for storing model artifacts. </p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ModelArtifacts { /// <p>The path of the S3 object that contains the model artifacts. For example, <code>s3://bucket-name/keynameprefix/model.tar.gz</code>.</p> #[serde(rename = "S3ModelArtifacts")] pub s3_model_artifacts: String, } /// <p>Describes the Docker container for the model package.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ModelPackageContainerDefinition { /// <p>The DNS host name for the Docker container.</p> #[serde(rename = "ContainerHostname")] #[serde(skip_serializing_if = "Option::is_none")] pub container_hostname: Option<String>, /// <p>The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.</p> <p>If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code> image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p> #[serde(rename = "Image")] pub image: String, /// <p>An MD5 hash of the training algorithm that identifies the Docker image used for training.</p> #[serde(rename = "ImageDigest")] #[serde(skip_serializing_if = "Option::is_none")] pub image_digest: Option<String>, /// <p>The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single <code>gzip</code> compressed tar archive (<code>.tar.gz</code> suffix).</p> #[serde(rename = "ModelDataUrl")] #[serde(skip_serializing_if = "Option::is_none")] pub model_data_url: Option<String>, /// <p>The AWS Marketplace product ID of the model package.</p> #[serde(rename = "ProductId")] #[serde(skip_serializing_if = "Option::is_none")] pub product_id: Option<String>, } /// <p>Specifies the validation and image scan statuses of the model package.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ModelPackageStatusDetails { /// <p>The status of the scan of the Docker image container for the model package.</p> #[serde(rename = "ImageScanStatuses")] #[serde(skip_serializing_if = "Option::is_none")] pub image_scan_statuses: Option<Vec<ModelPackageStatusItem>>, /// <p>The validation status of the model package.</p> #[serde(rename = "ValidationStatuses")] pub validation_statuses: Vec<ModelPackageStatusItem>, } /// <p>Represents the overall status of a model package.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ModelPackageStatusItem { /// <p>if the overall status is <code>Failed</code>, the reason for the failure.</p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>The name of the model package for which the overall status is being reported.</p> #[serde(rename = "Name")] pub name: String, /// <p>The current status.</p> #[serde(rename = "Status")] pub status: String, } /// <p>Provides summary information about a model package.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ModelPackageSummary { /// <p>A timestamp that shows when the model package was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The Amazon Resource Name (ARN) of the model package.</p> #[serde(rename = "ModelPackageArn")] pub model_package_arn: String, /// <p>A brief description of the model package.</p> #[serde(rename = "ModelPackageDescription")] #[serde(skip_serializing_if = "Option::is_none")] pub model_package_description: Option<String>, /// <p>The name of the model package.</p> #[serde(rename = "ModelPackageName")] pub model_package_name: String, /// <p>The overall status of the model package.</p> #[serde(rename = "ModelPackageStatus")] pub model_package_status: String, } /// <p>Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.</p> <p>The data provided in the validation profile is made available to your buyers on AWS Marketplace.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ModelPackageValidationProfile { /// <p>The name of the profile for the model package.</p> #[serde(rename = "ProfileName")] pub profile_name: String, /// <p>The <code>TransformJobDefinition</code> object that describes the transform job used for the validation of the model package.</p> #[serde(rename = "TransformJobDefinition")] pub transform_job_definition: TransformJobDefinition, } /// <p>Specifies batch transform jobs that Amazon SageMaker runs to validate your model package.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ModelPackageValidationSpecification { /// <p>An array of <code>ModelPackageValidationProfile</code> objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.</p> #[serde(rename = "ValidationProfiles")] pub validation_profiles: Vec<ModelPackageValidationProfile>, /// <p>The IAM roles to be used for the validation of the model package.</p> #[serde(rename = "ValidationRole")] pub validation_role: String, } /// <p>Provides summary information about a model.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ModelSummary { /// <p>A timestamp that indicates when the model was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>The Amazon Resource Name (ARN) of the model.</p> #[serde(rename = "ModelArn")] pub model_arn: String, /// <p>The name of the model that you want a summary for.</p> #[serde(rename = "ModelName")] pub model_name: String, } /// <p><p>Defines a list of <code>NestedFilters</code> objects. To satisfy the conditions specified in the <code>NestedFilters</code> call, a resource must satisfy the conditions of all of the filters.</p> <p>For example, you could define a <code>NestedFilters</code> using the training job's <code>InputDataConfig</code> property to filter on <code>Channel</code> objects. </p> <p>A <code>NestedFilters</code> object contains multiple filters. For example, to find all training jobs whose name contains <code>train</code> and that have <code>cat/data</code> in their <code>S3Uri</code> (specified in <code>InputDataConfig</code>), you need to create a <code>NestedFilters</code> object that specifies the <code>InputDataConfig</code> property with the following <code>Filter</code> objects:</p> <ul> <li> <p> <code>'{Name:"InputDataConfig.ChannelName", "Operator":"EQUALS", "Value":"train"}',</code> </p> </li> <li> <p> <code>'{Name:"InputDataConfig.DataSource.S3DataSource.S3Uri", "Operator":"CONTAINS", "Value":"cat/data"}'</code> </p> </li> </ul></p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct NestedFilters { /// <p>A list of filters. Each filter acts on a property. Filters must contain at least one <code>Filters</code> value. For example, a <code>NestedFilters</code> call might include a filter on the <code>PropertyName</code> parameter of the <code>InputDataConfig</code> property: <code>InputDataConfig.DataSource.S3DataSource.S3Uri</code>.</p> #[serde(rename = "Filters")] pub filters: Vec<Filter>, /// <p>The name of the property to use in the nested filters. The value must match a listed property name, such as <code>InputDataConfig</code>.</p> #[serde(rename = "NestedPropertyName")] pub nested_property_name: String, } /// <p>Provides a summary of a notebook instance lifecycle configuration.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct NotebookInstanceLifecycleConfigSummary { /// <p>A timestamp that tells when the lifecycle configuration was created.</p> #[serde(rename = "CreationTime")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time: Option<f64>, /// <p>A timestamp that tells when the lifecycle configuration was last modified.</p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the lifecycle configuration.</p> #[serde(rename = "NotebookInstanceLifecycleConfigArn")] pub notebook_instance_lifecycle_config_arn: String, /// <p>The name of the lifecycle configuration.</p> #[serde(rename = "NotebookInstanceLifecycleConfigName")] pub notebook_instance_lifecycle_config_name: String, } /// <p>Contains the notebook instance lifecycle configuration script.</p> <p>Each lifecycle configuration script has a limit of 16384 characters.</p> <p>The value of the <code>$PATH</code> environment variable that is available to both scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p> <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group <code>/aws/sagemaker/NotebookInstances</code> in log stream <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p> <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct NotebookInstanceLifecycleHook { /// <p>A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.</p> #[serde(rename = "Content")] #[serde(skip_serializing_if = "Option::is_none")] pub content: Option<String>, } /// <p>Provides summary information for an Amazon SageMaker notebook instance.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct NotebookInstanceSummary { /// <p>An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p> #[serde(rename = "AdditionalCodeRepositories")] #[serde(skip_serializing_if = "Option::is_none")] pub additional_code_repositories: Option<Vec<String>>, /// <p>A timestamp that shows when the notebook instance was created.</p> #[serde(rename = "CreationTime")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time: Option<f64>, /// <p>The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p> #[serde(rename = "DefaultCodeRepository")] #[serde(skip_serializing_if = "Option::is_none")] pub default_code_repository: Option<String>, /// <p>The type of ML compute instance that the notebook instance is running on.</p> #[serde(rename = "InstanceType")] #[serde(skip_serializing_if = "Option::is_none")] pub instance_type: Option<String>, /// <p>A timestamp that shows when the notebook instance was last modified.</p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the notebook instance.</p> #[serde(rename = "NotebookInstanceArn")] pub notebook_instance_arn: String, /// <p>The name of a notebook instance lifecycle configuration associated with this notebook instance.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p> #[serde(rename = "NotebookInstanceLifecycleConfigName")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_lifecycle_config_name: Option<String>, /// <p>The name of the notebook instance that you want a summary for.</p> #[serde(rename = "NotebookInstanceName")] pub notebook_instance_name: String, /// <p>The status of the notebook instance.</p> #[serde(rename = "NotebookInstanceStatus")] #[serde(skip_serializing_if = "Option::is_none")] pub notebook_instance_status: Option<String>, /// <p>The URL that you use to connect to the Jupyter instance running in your notebook instance. </p> #[serde(rename = "Url")] #[serde(skip_serializing_if = "Option::is_none")] pub url: Option<String>, } /// <p>Configures SNS notifications of available or expiring work items for work teams.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct NotificationConfiguration { /// <p>The ARN for the SNS topic to which notifications should be published.</p> #[serde(rename = "NotificationTopicArn")] #[serde(skip_serializing_if = "Option::is_none")] pub notification_topic_arn: Option<String>, } /// <p>Specifies the number of training jobs that this hyperparameter tuning job launched, categorized by the status of their objective metric. The objective metric status shows whether the final objective metric for the training job has been evaluated by the tuning job and used in the hyperparameter tuning process.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ObjectiveStatusCounters { /// <p>The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.</p> #[serde(rename = "Failed")] #[serde(skip_serializing_if = "Option::is_none")] pub failed: Option<i64>, /// <p>The number of training jobs that are in progress and pending evaluation of their final objective metric.</p> #[serde(rename = "Pending")] #[serde(skip_serializing_if = "Option::is_none")] pub pending: Option<i64>, /// <p>The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.</p> #[serde(rename = "Succeeded")] #[serde(skip_serializing_if = "Option::is_none")] pub succeeded: Option<i64>, } /// <p>Contains information about the output location for the compiled model and the device (target) that the model runs on.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct OutputConfig { /// <p>Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.</p> #[serde(rename = "S3OutputLocation")] pub s3_output_location: String, /// <p>Identifies the device that you want to run your model on after it has been compiled. For example: ml_c5.</p> #[serde(rename = "TargetDevice")] pub target_device: String, } /// <p>Provides information about how to store model training results (model artifacts).</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct OutputDataConfig { /// <p>The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The <code>KmsKeyId</code> can be any of the following formats: </p> <ul> <li> <p>// KMS Key ID</p> <p> <code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// KMS Key Alias</p> <p> <code>"alias/ExampleAlias"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key Alias</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"</code> </p> </li> </ul> <p>If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see <a href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS-Managed Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i> </p> <p>The KMS key policy must grant permission to the IAM role that you specify in your <code>CreateTramsformJob</code> request. For more information, see <a href="http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using Key Policies in AWS KMS</a> in the <i>AWS Key Management Service Developer Guide</i>.</p> #[serde(rename = "KmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub kms_key_id: Option<String>, /// <p>Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, <code>s3://bucket-name/key-name-prefix</code>. </p> #[serde(rename = "S3OutputPath")] pub s3_output_path: String, } /// <p>Defines the possible values for categorical, continuous, and integer hyperparameters to be used by an algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ParameterRange { /// <p>A <code>CategoricalParameterRangeSpecification</code> object that defines the possible values for a categorical hyperparameter.</p> #[serde(rename = "CategoricalParameterRangeSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub categorical_parameter_range_specification: Option<CategoricalParameterRangeSpecification>, /// <p>A <code>ContinuousParameterRangeSpecification</code> object that defines the possible values for a continuous hyperparameter.</p> #[serde(rename = "ContinuousParameterRangeSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub continuous_parameter_range_specification: Option<ContinuousParameterRangeSpecification>, /// <p>A <code>IntegerParameterRangeSpecification</code> object that defines the possible values for an integer hyperparameter.</p> #[serde(rename = "IntegerParameterRangeSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub integer_parameter_range_specification: Option<IntegerParameterRangeSpecification>, } /// <p><p>Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.</p> <note> <p>You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.</p> </note></p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ParameterRanges { /// <p>The array of <a>CategoricalParameterRange</a> objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.</p> #[serde(rename = "CategoricalParameterRanges")] #[serde(skip_serializing_if = "Option::is_none")] pub categorical_parameter_ranges: Option<Vec<CategoricalParameterRange>>, /// <p>The array of <a>ContinuousParameterRange</a> objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.</p> #[serde(rename = "ContinuousParameterRanges")] #[serde(skip_serializing_if = "Option::is_none")] pub continuous_parameter_ranges: Option<Vec<ContinuousParameterRange>>, /// <p>The array of <a>IntegerParameterRange</a> objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.</p> #[serde(rename = "IntegerParameterRanges")] #[serde(skip_serializing_if = "Option::is_none")] pub integer_parameter_ranges: Option<Vec<IntegerParameterRange>>, } /// <p>A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ParentHyperParameterTuningJob { /// <p>The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.</p> #[serde(rename = "HyperParameterTuningJobName")] #[serde(skip_serializing_if = "Option::is_none")] pub hyper_parameter_tuning_job_name: Option<String>, } /// <p>Identifies a model that you want to host and the resources to deploy for hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying variant weights. </p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ProductionVariant { /// <p>The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>.</p> #[serde(rename = "AcceleratorType")] #[serde(skip_serializing_if = "Option::is_none")] pub accelerator_type: Option<String>, /// <p>Number of instances to launch initially.</p> #[serde(rename = "InitialInstanceCount")] pub initial_instance_count: i64, /// <p>Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the <code>VariantWeight</code> to the sum of all <code>VariantWeight</code> values across all ProductionVariants. If unspecified, it defaults to 1.0. </p> #[serde(rename = "InitialVariantWeight")] #[serde(skip_serializing_if = "Option::is_none")] pub initial_variant_weight: Option<f32>, /// <p>The ML compute instance type.</p> #[serde(rename = "InstanceType")] pub instance_type: String, /// <p>The name of the model that you want to host. This is the name that you specified when creating the model.</p> #[serde(rename = "ModelName")] pub model_name: String, /// <p>The name of the production variant.</p> #[serde(rename = "VariantName")] pub variant_name: String, } /// <p>Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the <code>UpdateEndpointWeightsAndCapacities</code> API and the endpoint status is <code>Updating</code>, you get different desired and current values. </p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct ProductionVariantSummary { /// <p>The number of instances associated with the variant.</p> #[serde(rename = "CurrentInstanceCount")] #[serde(skip_serializing_if = "Option::is_none")] pub current_instance_count: Option<i64>, /// <p>The weight associated with the variant.</p> #[serde(rename = "CurrentWeight")] #[serde(skip_serializing_if = "Option::is_none")] pub current_weight: Option<f32>, /// <p>An array of <code>DeployedImage</code> objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this <code>ProductionVariant</code>.</p> #[serde(rename = "DeployedImages")] #[serde(skip_serializing_if = "Option::is_none")] pub deployed_images: Option<Vec<DeployedImage>>, /// <p>The number of instances requested in the <code>UpdateEndpointWeightsAndCapacities</code> request. </p> #[serde(rename = "DesiredInstanceCount")] #[serde(skip_serializing_if = "Option::is_none")] pub desired_instance_count: Option<i64>, /// <p>The requested weight, as specified in the <code>UpdateEndpointWeightsAndCapacities</code> request. </p> #[serde(rename = "DesiredWeight")] #[serde(skip_serializing_if = "Option::is_none")] pub desired_weight: Option<f32>, /// <p>The name of the variant.</p> #[serde(rename = "VariantName")] pub variant_name: String, } /// <p>A type of <code>SuggestionQuery</code>. A suggestion query for retrieving property names that match the specified hint.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct PropertyNameQuery { /// <p>Text that is part of a property's name. The property names of hyperparameter, metric, and tag key names that begin with the specified text in the <code>PropertyNameHint</code>.</p> #[serde(rename = "PropertyNameHint")] pub property_name_hint: String, } /// <p>A property name returned from a <code>GetSearchSuggestions</code> call that specifies a value in the <code>PropertyNameQuery</code> field.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct PropertyNameSuggestion { /// <p>A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.</p> #[serde(rename = "PropertyName")] #[serde(skip_serializing_if = "Option::is_none")] pub property_name: Option<String>, } /// <p><p>Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed. </p> <p>Use one of the following prices for bounding box tasks. Prices are in US dollars.</p> <ul> <li> <p>0.036</p> </li> <li> <p>0.048</p> </li> <li> <p>0.060</p> </li> <li> <p>0.072</p> </li> <li> <p>0.120</p> </li> <li> <p>0.240</p> </li> <li> <p>0.360</p> </li> <li> <p>0.480</p> </li> <li> <p>0.600</p> </li> <li> <p>0.720</p> </li> <li> <p>0.840</p> </li> <li> <p>0.960</p> </li> <li> <p>1.080</p> </li> <li> <p>1.200</p> </li> </ul> <p>Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.</p> <ul> <li> <p>0.012</p> </li> <li> <p>0.024</p> </li> <li> <p>0.036</p> </li> <li> <p>0.048</p> </li> <li> <p>0.060</p> </li> <li> <p>0.072</p> </li> <li> <p>0.120</p> </li> <li> <p>0.240</p> </li> <li> <p>0.360</p> </li> <li> <p>0.480</p> </li> <li> <p>0.600</p> </li> <li> <p>0.720</p> </li> <li> <p>0.840</p> </li> <li> <p>0.960</p> </li> <li> <p>1.080</p> </li> <li> <p>1.200</p> </li> </ul> <p>Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.</p> <ul> <li> <p>0.840</p> </li> <li> <p>0.960</p> </li> <li> <p>1.080</p> </li> <li> <p>1.200</p> </li> </ul></p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct PublicWorkforceTaskPrice { /// <p>Defines the amount of money paid to a worker in United States dollars.</p> #[serde(rename = "AmountInUsd")] #[serde(skip_serializing_if = "Option::is_none")] pub amount_in_usd: Option<USD>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct RenderUiTemplateRequest { /// <p>The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.</p> #[serde(rename = "RoleArn")] pub role_arn: String, /// <p>A <code>RenderableTask</code> object containing a representative task to render.</p> #[serde(rename = "Task")] pub task: RenderableTask, /// <p>A <code>Template</code> object containing the worker UI template to render.</p> #[serde(rename = "UiTemplate")] pub ui_template: UiTemplate, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct RenderUiTemplateResponse { /// <p>A list of one or more <code>RenderingError</code> objects if any were encountered while rendering the template. If there were no errors, the list is empty.</p> #[serde(rename = "Errors")] pub errors: Vec<RenderingError>, /// <p>A Liquid template that renders the HTML for the worker UI.</p> #[serde(rename = "RenderedContent")] pub rendered_content: String, } /// <p>Contains input values for a task.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct RenderableTask { /// <p>A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable <code>task.input</code>. For example, if you define a variable <code>task.input.text</code> in your template, you can supply the variable in the JSON object as <code>"text": "sample text"</code>.</p> #[serde(rename = "Input")] pub input: String, } /// <p>A description of an error that occurred while rendering the template.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct RenderingError { /// <p>A unique identifier for a specific class of errors.</p> #[serde(rename = "Code")] pub code: String, /// <p>A human-readable message describing the error.</p> #[serde(rename = "Message")] pub message: String, } /// <p>Describes the resources, including ML compute instances and ML storage volumes, to use for model training. </p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ResourceConfig { /// <p>The number of ML compute instances to use. For distributed training, provide a value greater than 1. </p> #[serde(rename = "InstanceCount")] pub instance_count: i64, /// <p>The ML compute instance type. </p> #[serde(rename = "InstanceType")] pub instance_type: String, /// <p><p>The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The <code>VolumeKmsKeyId</code> can be any of the following formats:</p> <ul> <li> <p>// KMS Key ID</p> <p> <code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> </ul></p> #[serde(rename = "VolumeKmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub volume_kms_key_id: Option<String>, /// <p><p>The size of the ML storage volume that you want to provision. </p> <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. </p> <p>You must specify sufficient ML storage for your scenario. </p> <note> <p> Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type. </p> </note></p> #[serde(rename = "VolumeSizeInGB")] pub volume_size_in_gb: i64, } /// <p>Specifies the maximum number of training jobs and parallel training jobs that a hyperparameter tuning job can launch.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ResourceLimits { /// <p>The maximum number of training jobs that a hyperparameter tuning job can launch.</p> #[serde(rename = "MaxNumberOfTrainingJobs")] pub max_number_of_training_jobs: i64, /// <p>The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.</p> #[serde(rename = "MaxParallelTrainingJobs")] pub max_parallel_training_jobs: i64, } /// <p>Describes the S3 data source.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct S3DataSource { /// <p>A list of one or more attribute names to use that are found in a specified augmented manifest file.</p> #[serde(rename = "AttributeNames")] #[serde(skip_serializing_if = "Option::is_none")] pub attribute_names: Option<Vec<String>>, /// <p>If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify <code>FullyReplicated</code>. </p> <p>If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify <code>ShardedByS3Key</code>. If there are <i>n</i> ML compute instances launched for a training job, each instance gets approximately 1/<i>n</i> of the number of S3 objects. In this case, model training on each machine uses only the subset of training data. </p> <p>Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms. </p> <p>In distributed training, where you use multiple ML compute EC2 instances, you might choose <code>ShardedByS3Key</code>. If the algorithm requires copying training data to the ML storage volume (when <code>TrainingInputMode</code> is set to <code>File</code>), this copies 1/<i>n</i> of the number of objects. </p> #[serde(rename = "S3DataDistributionType")] #[serde(skip_serializing_if = "Option::is_none")] pub s3_data_distribution_type: Option<String>, /// <p>If you choose <code>S3Prefix</code>, <code>S3Uri</code> identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training. </p> <p>If you choose <code>ManifestFile</code>, <code>S3Uri</code> identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training. </p> <p>If you choose <code>AugmentedManifestFile</code>, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. <code>AugmentedManifestFile</code> can only be used if the Channel's input mode is <code>Pipe</code>.</p> #[serde(rename = "S3DataType")] pub s3_data_type: String, /// <p><p>Depending on the value specified for the <code>S3DataType</code>, identifies either a key name prefix or a manifest. For example: </p> <ul> <li> <p> A key name prefix might look like this: <code>s3://bucketname/exampleprefix</code>. </p> </li> <li> <p> A manifest might look like this: <code>s3://bucketname/example.manifest</code> </p> <p> The manifest is an S3 object which is a JSON file with the following format: </p> <p> <code>[</code> </p> <p> <code> {"prefix": "s3://customer<em>bucket/some/prefix/"},</code> </p> <p> <code> "relative/path/to/custdata-1",</code> </p> <p> <code> "relative/path/custdata-2",</code> </p> <p> <code> ...</code> </p> <p> <code> ]</code> </p> <p> The preceding JSON matches the following <code>s3Uris</code>: </p> <p> <code>s3://customer</em>bucket/some/prefix/relative/path/to/custdata-1</code> </p> <p> <code>s3://customer_bucket/some/prefix/relative/path/custdata-2</code> </p> <p> <code>...</code> </p> <p>The complete set of <code>s3uris</code> in this manifest is the input data for the channel for this datasource. The object that each <code>s3uris</code> points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf. </p> </li> </ul></p> #[serde(rename = "S3Uri")] pub s3_uri: String, } /// <p><p>A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression's condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A <code>SearchExpression</code> can contain up to twenty elements.</p> <p>A <code>SearchExpression</code> contains the following components:</p> <ul> <li> <p>A list of <code>Filter</code> objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.</p> </li> <li> <p>A list of <code>NestedFilter</code> objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.</p> </li> <li> <p>A list of <code>SearchExpression</code> objects. A search expression object can be nested in a list of search expression objects.</p> </li> <li> <p>A Boolean operator: <code>And</code> or <code>Or</code>.</p> </li> </ul></p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct SearchExpression { /// <p>A list of filter objects.</p> #[serde(rename = "Filters")] #[serde(skip_serializing_if = "Option::is_none")] pub filters: Option<Vec<Filter>>, /// <p>A list of nested filter objects.</p> #[serde(rename = "NestedFilters")] #[serde(skip_serializing_if = "Option::is_none")] pub nested_filters: Option<Vec<NestedFilters>>, /// <p>A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify <code>And</code>. If only a single conditional statement needs to be true for the entire search expression to be true, specify <code>Or</code>. The default value is <code>And</code>.</p> #[serde(rename = "Operator")] #[serde(skip_serializing_if = "Option::is_none")] pub operator: Option<String>, /// <p>A list of search expression objects.</p> #[serde(rename = "SubExpressions")] #[serde(skip_serializing_if = "Option::is_none")] pub sub_expressions: Option<Vec<SearchExpression>>, } /// <p>An individual search result record that contains a single resource object.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct SearchRecord { /// <p>A <code>TrainingJob</code> object that is returned as part of a <code>Search</code> request.</p> #[serde(rename = "TrainingJob")] #[serde(skip_serializing_if = "Option::is_none")] pub training_job: Option<TrainingJob>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct SearchRequest { /// <p>The maximum number of results to return in a <code>SearchResponse</code>.</p> #[serde(rename = "MaxResults")] #[serde(skip_serializing_if = "Option::is_none")] pub max_results: Option<i64>, /// <p>If more than <code>MaxResults</code> resource objects match the specified <code>SearchExpression</code>, the <code>SearchResponse</code> includes a <code>NextToken</code>. The <code>NextToken</code> can be passed to the next <code>SearchRequest</code> to continue retrieving results for the specified <code>SearchExpression</code> and <code>Sort</code> parameters.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>The name of the Amazon SageMaker resource to search for. Currently, the only valid <code>Resource</code> value is <code>TrainingJob</code>.</p> #[serde(rename = "Resource")] pub resource: String, /// <p>A Boolean conditional statement. Resource objects must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive <code>SubExpressions</code>, <code>NestedFilters</code>, and <code>Filters</code> that can be included in a <code>SearchExpression</code> object is 50.</p> #[serde(rename = "SearchExpression")] #[serde(skip_serializing_if = "Option::is_none")] pub search_expression: Option<SearchExpression>, /// <p>The name of the resource property used to sort the <code>SearchResults</code>. The default is <code>LastModifiedTime</code>.</p> #[serde(rename = "SortBy")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_by: Option<String>, /// <p>How <code>SearchResults</code> are ordered. Valid values are <code>Ascending</code> or <code>Descending</code>. The default is <code>Descending</code>.</p> #[serde(rename = "SortOrder")] #[serde(skip_serializing_if = "Option::is_none")] pub sort_order: Option<String>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct SearchResponse { /// <p>If the result of the previous <code>Search</code> request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.</p> #[serde(rename = "NextToken")] #[serde(skip_serializing_if = "Option::is_none")] pub next_token: Option<String>, /// <p>A list of <code>SearchResult</code> objects.</p> #[serde(rename = "Results")] #[serde(skip_serializing_if = "Option::is_none")] pub results: Option<Vec<SearchRecord>>, } /// <p><p>An array element of <a>DescribeTrainingJobResponse$SecondaryStatusTransitions</a>. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, Amazon SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status. </p> <p/></p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct SecondaryStatusTransition { /// <p>A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.</p> #[serde(rename = "EndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub end_time: Option<f64>, /// <p>A timestamp that shows when the training job transitioned to the current secondary status state.</p> #[serde(rename = "StartTime")] pub start_time: f64, /// <p><p>Contains a secondary status information from a training job.</p> <p>Status might be one of the following secondary statuses:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTrainingStack</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul></p> #[serde(rename = "Status")] pub status: String, /// <p><p>A detailed description of the progress within a secondary status. </p> <p>Amazon SageMaker provides secondary statuses and status messages that apply to each of them:</p> <dl> <dt>Starting</dt> <dd> <ul> <li> <p>Starting the training job.</p> </li> <li> <p>Launching requested ML instances.</p> </li> <li> <p>Insufficient capacity error from EC2 while launching instances, retrying!</p> </li> <li> <p>Launched instance was unhealthy, replacing it!</p> </li> <li> <p>Preparing the instances for training.</p> </li> </ul> </dd> <dt>Training</dt> <dd> <ul> <li> <p>Downloading the training image.</p> </li> <li> <p>Training image download completed. Training in progress.</p> </li> </ul> </dd> </dl> <important> <p>Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.</p> </important> <p>To have an overview of your training job's progress, view <code>TrainingJobStatus</code> and <code>SecondaryStatus</code> in <a>DescribeTrainingJobResponse</a>, and <code>StatusMessage</code> together. For example, at the start of a training job, you might see the following:</p> <ul> <li> <p> <code>TrainingJobStatus</code> - InProgress</p> </li> <li> <p> <code>SecondaryStatus</code> - Training</p> </li> <li> <p> <code>StatusMessage</code> - Downloading the training image</p> </li> </ul></p> #[serde(rename = "StatusMessage")] #[serde(skip_serializing_if = "Option::is_none")] pub status_message: Option<String>, } /// <p>A configuration for a shuffle option for input data in a channel. If you use <code>S3Prefix</code> for <code>S3DataType</code>, the results of the S3 key prefix matches are shuffled. If you use <code>ManifestFile</code>, the order of the S3 object references in the <code>ManifestFile</code> is shuffled. If you use <code>AugmentedManifestFile</code>, the order of the JSON lines in the <code>AugmentedManifestFile</code> is shuffled. The shuffling order is determined using the <code>Seed</code> value.</p> <p>For Pipe input mode, shuffling is done at the start of every epoch. With large datasets, this ensures that the order of the training data is different for each epoch, and it helps reduce bias and possible overfitting. In a multi-node training job when <code>ShuffleConfig</code> is combined with <code>S3DataDistributionType</code> of <code>ShardedByS3Key</code>, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct ShuffleConfig { /// <p>Determines the shuffling order in <code>ShuffleConfig</code> value.</p> #[serde(rename = "Seed")] pub seed: i64, } /// <p>Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct SourceAlgorithm { /// <p>The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.</p> #[serde(rename = "AlgorithmName")] pub algorithm_name: String, /// <p>The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single <code>gzip</code> compressed tar archive (<code>.tar.gz</code> suffix).</p> #[serde(rename = "ModelDataUrl")] #[serde(skip_serializing_if = "Option::is_none")] pub model_data_url: Option<String>, } /// <p>A list of algorithms that were used to create a model package.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct SourceAlgorithmSpecification { /// <p>A list of the algorithms that were used to create a model package.</p> #[serde(rename = "SourceAlgorithms")] pub source_algorithms: Vec<SourceAlgorithm>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct StartNotebookInstanceInput { /// <p>The name of the notebook instance to start.</p> #[serde(rename = "NotebookInstanceName")] pub notebook_instance_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct StopCompilationJobRequest { /// <p>The name of the model compilation job to stop.</p> #[serde(rename = "CompilationJobName")] pub compilation_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct StopHyperParameterTuningJobRequest { /// <p>The name of the tuning job to stop.</p> #[serde(rename = "HyperParameterTuningJobName")] pub hyper_parameter_tuning_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct StopLabelingJobRequest { /// <p>The name of the labeling job to stop.</p> #[serde(rename = "LabelingJobName")] pub labeling_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct StopNotebookInstanceInput { /// <p>The name of the notebook instance to terminate.</p> #[serde(rename = "NotebookInstanceName")] pub notebook_instance_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct StopTrainingJobRequest { /// <p>The name of the training job to stop.</p> #[serde(rename = "TrainingJobName")] pub training_job_name: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct StopTransformJobRequest { /// <p>The name of the transform job to stop.</p> #[serde(rename = "TransformJobName")] pub transform_job_name: String, } /// <p>Specifies how long model training can run. When model training reaches the limit, Amazon SageMaker ends the training job. Use this API to cap model training cost.</p> <p>To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of training is not lost. </p> <p>Training algorithms provided by Amazon SageMaker automatically saves the intermediate results of a model training job (it is best effort case, as model might not be ready to save as some stages, for example training just started). This intermediate data is a valid model artifact. You can use it to create a model (<code>CreateModel</code>). </p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct StoppingCondition { /// <p>The maximum length of time, in seconds, that the training job can run. If model training does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. Maximum value is 28 days.</p> #[serde(rename = "MaxRuntimeInSeconds")] #[serde(skip_serializing_if = "Option::is_none")] pub max_runtime_in_seconds: Option<i64>, } /// <p>Describes a work team of a vendor that does the a labelling job.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct SubscribedWorkteam { /// <p><p/></p> #[serde(rename = "ListingId")] #[serde(skip_serializing_if = "Option::is_none")] pub listing_id: Option<String>, /// <p>The description of the vendor from the Amazon Marketplace.</p> #[serde(rename = "MarketplaceDescription")] #[serde(skip_serializing_if = "Option::is_none")] pub marketplace_description: Option<String>, /// <p>The title of the service provided by the vendor in the Amazon Marketplace.</p> #[serde(rename = "MarketplaceTitle")] #[serde(skip_serializing_if = "Option::is_none")] pub marketplace_title: Option<String>, /// <p>The name of the vendor in the Amazon Marketplace.</p> #[serde(rename = "SellerName")] #[serde(skip_serializing_if = "Option::is_none")] pub seller_name: Option<String>, /// <p>The Amazon Resource Name (ARN) of the vendor that you have subscribed.</p> #[serde(rename = "WorkteamArn")] pub workteam_arn: String, } /// <p>Limits the property names that are included in the response.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct SuggestionQuery { /// <p>A type of <code>SuggestionQuery</code>. Defines a property name hint. Only property names that match the specified hint are included in the response.</p> #[serde(rename = "PropertyNameQuery")] #[serde(skip_serializing_if = "Option::is_none")] pub property_name_query: Option<PropertyNameQuery>, } /// <p>Describes a tag. </p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct Tag { /// <p>The tag key.</p> #[serde(rename = "Key")] pub key: String, /// <p>The tag value.</p> #[serde(rename = "Value")] pub value: String, } /// <p>Contains information about a training job.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct TrainingJob { /// <p>Information about the algorithm used for training, and algorithm metadata.</p> #[serde(rename = "AlgorithmSpecification")] #[serde(skip_serializing_if = "Option::is_none")] pub algorithm_specification: Option<AlgorithmSpecification>, /// <p>A timestamp that indicates when the training job was created.</p> #[serde(rename = "CreationTime")] #[serde(skip_serializing_if = "Option::is_none")] pub creation_time: Option<f64>, /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.</p> #[serde(rename = "EnableInterContainerTrafficEncryption")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_inter_container_traffic_encryption: Option<bool>, /// <p>If the <code>TrainingJob</code> was created with network isolation, the value is set to <code>true</code>. If network isolation is enabled, nodes can't communicate beyond the VPC they run in.</p> #[serde(rename = "EnableNetworkIsolation")] #[serde(skip_serializing_if = "Option::is_none")] pub enable_network_isolation: Option<bool>, /// <p>If the training job failed, the reason it failed.</p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.</p> #[serde(rename = "FinalMetricDataList")] #[serde(skip_serializing_if = "Option::is_none")] pub final_metric_data_list: Option<Vec<MetricData>>, /// <p>Algorithm-specific parameters.</p> #[serde(rename = "HyperParameters")] #[serde(skip_serializing_if = "Option::is_none")] pub hyper_parameters: Option<::std::collections::HashMap<String, String>>, /// <p>An array of <code>Channel</code> objects that describes each data input channel.</p> #[serde(rename = "InputDataConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub input_data_config: Option<Vec<Channel>>, /// <p>The Amazon Resource Name (ARN) of the labeling job.</p> #[serde(rename = "LabelingJobArn")] #[serde(skip_serializing_if = "Option::is_none")] pub labeling_job_arn: Option<String>, /// <p>A timestamp that indicates when the status of the training job was last modified.</p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>Information about the Amazon S3 location that is configured for storing model artifacts.</p> #[serde(rename = "ModelArtifacts")] #[serde(skip_serializing_if = "Option::is_none")] pub model_artifacts: Option<ModelArtifacts>, /// <p>The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.</p> #[serde(rename = "OutputDataConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub output_data_config: Option<OutputDataConfig>, /// <p>Resources, including ML compute instances and ML storage volumes, that are configured for model training.</p> #[serde(rename = "ResourceConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub resource_config: Option<ResourceConfig>, /// <p>The AWS Identity and Access Management (IAM) role configured for the training job.</p> #[serde(rename = "RoleArn")] #[serde(skip_serializing_if = "Option::is_none")] pub role_arn: Option<String>, /// <p><p> Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see <code>StatusMessage</code> under <a>SecondaryStatusTransition</a>.</p> <p>Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <important> <p>Valid values for <code>SecondaryStatus</code> are subject to change. </p> </important> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTrainingStack</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul></p> #[serde(rename = "SecondaryStatus")] #[serde(skip_serializing_if = "Option::is_none")] pub secondary_status: Option<String>, /// <p>A history of all of the secondary statuses that the training job has transitioned through.</p> #[serde(rename = "SecondaryStatusTransitions")] #[serde(skip_serializing_if = "Option::is_none")] pub secondary_status_transitions: Option<Vec<SecondaryStatusTransition>>, /// <p>The condition under which to stop the training job.</p> #[serde(rename = "StoppingCondition")] #[serde(skip_serializing_if = "Option::is_none")] pub stopping_condition: Option<StoppingCondition>, /// <p>An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>.</p> #[serde(rename = "Tags")] #[serde(skip_serializing_if = "Option::is_none")] pub tags: Option<Vec<Tag>>, /// <p>Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of <code>TrainingStartTime</code> and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.</p> #[serde(rename = "TrainingEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub training_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the training job.</p> #[serde(rename = "TrainingJobArn")] #[serde(skip_serializing_if = "Option::is_none")] pub training_job_arn: Option<String>, /// <p>The name of the training job.</p> #[serde(rename = "TrainingJobName")] #[serde(skip_serializing_if = "Option::is_none")] pub training_job_name: Option<String>, /// <p>The status of the training job.</p> <p>Training job statuses are:</p> <ul> <li> <p> <code>InProgress</code> - The training is in progress.</p> </li> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> <li> <p> <code>Failed</code> - The training job has failed. To see the reason for the failure, see the <code>FailureReason</code> field in the response to a <code>DescribeTrainingJobResponse</code> call.</p> </li> <li> <p> <code>Stopping</code> - The training job is stopping.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> <p>For more detailed information, see <code>SecondaryStatus</code>. </p> #[serde(rename = "TrainingJobStatus")] #[serde(skip_serializing_if = "Option::is_none")] pub training_job_status: Option<String>, /// <p>Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of <code>TrainingEndTime</code>. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.</p> #[serde(rename = "TrainingStartTime")] #[serde(skip_serializing_if = "Option::is_none")] pub training_start_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.</p> #[serde(rename = "TuningJobArn")] #[serde(skip_serializing_if = "Option::is_none")] pub tuning_job_arn: Option<String>, /// <p>A <a>VpcConfig</a> object that specifies the VPC that this training job has access to. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p> #[serde(rename = "VpcConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub vpc_config: Option<VpcConfig>, } /// <p>Defines the input needed to run a training job using the algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct TrainingJobDefinition { /// <p>The hyperparameters used for the training job.</p> #[serde(rename = "HyperParameters")] #[serde(skip_serializing_if = "Option::is_none")] pub hyper_parameters: Option<::std::collections::HashMap<String, String>>, /// <p>An array of <code>Channel</code> objects, each of which specifies an input source.</p> #[serde(rename = "InputDataConfig")] pub input_data_config: Vec<Channel>, /// <p>the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.</p> #[serde(rename = "OutputDataConfig")] pub output_data_config: OutputDataConfig, /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training.</p> #[serde(rename = "ResourceConfig")] pub resource_config: ResourceConfig, /// <p>Sets a duration for training. Use this parameter to cap model training costs.</p> <p>To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts.</p> #[serde(rename = "StoppingCondition")] pub stopping_condition: StoppingCondition, /// <p>The input mode used by the algorithm for the training job. For the input modes that Amazon SageMaker algorithms support, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p> <p>If an algorithm supports the <code>File</code> input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the <code>Pipe</code> input mode, Amazon SageMaker streams data directly from S3 to the container.</p> #[serde(rename = "TrainingInputMode")] pub training_input_mode: String, } /// <p>The numbers of training jobs launched by a hyperparameter tuning job, categorized by status.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct TrainingJobStatusCounters { /// <p>The number of completed training jobs launched by the hyperparameter tuning job.</p> #[serde(rename = "Completed")] #[serde(skip_serializing_if = "Option::is_none")] pub completed: Option<i64>, /// <p>The number of in-progress training jobs launched by a hyperparameter tuning job.</p> #[serde(rename = "InProgress")] #[serde(skip_serializing_if = "Option::is_none")] pub in_progress: Option<i64>, /// <p>The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.</p> #[serde(rename = "NonRetryableError")] #[serde(skip_serializing_if = "Option::is_none")] pub non_retryable_error: Option<i64>, /// <p>The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.</p> #[serde(rename = "RetryableError")] #[serde(skip_serializing_if = "Option::is_none")] pub retryable_error: Option<i64>, /// <p>The number of training jobs launched by a hyperparameter tuning job that were manually stopped.</p> #[serde(rename = "Stopped")] #[serde(skip_serializing_if = "Option::is_none")] pub stopped: Option<i64>, } /// <p>Provides summary information about a training job.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct TrainingJobSummary { /// <p>A timestamp that shows when the training job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p> Timestamp when the training job was last modified. </p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses (<code>Completed</code>, <code>Failed</code>, or <code>Stopped</code>). </p> #[serde(rename = "TrainingEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub training_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the training job.</p> #[serde(rename = "TrainingJobArn")] pub training_job_arn: String, /// <p>The name of the training job that you want a summary for.</p> #[serde(rename = "TrainingJobName")] pub training_job_name: String, /// <p>The status of the training job.</p> #[serde(rename = "TrainingJobStatus")] pub training_job_status: String, } /// <p>Defines how the algorithm is used for a training job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct TrainingSpecification { /// <p>A list of <code>MetricDefinition</code> objects, which are used for parsing metrics generated by the algorithm.</p> #[serde(rename = "MetricDefinitions")] #[serde(skip_serializing_if = "Option::is_none")] pub metric_definitions: Option<Vec<MetricDefinition>>, /// <p>A list of the <code>HyperParameterSpecification</code> objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.></p> #[serde(rename = "SupportedHyperParameters")] #[serde(skip_serializing_if = "Option::is_none")] pub supported_hyper_parameters: Option<Vec<HyperParameterSpecification>>, /// <p>A list of the instance types that this algorithm can use for training.</p> #[serde(rename = "SupportedTrainingInstanceTypes")] pub supported_training_instance_types: Vec<String>, /// <p>A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.</p> #[serde(rename = "SupportedTuningJobObjectiveMetrics")] #[serde(skip_serializing_if = "Option::is_none")] pub supported_tuning_job_objective_metrics: Option<Vec<HyperParameterTuningJobObjective>>, /// <p>Indicates whether the algorithm supports distributed training. If set to false, buyers can’t request more than one instance during training.</p> #[serde(rename = "SupportsDistributedTraining")] #[serde(skip_serializing_if = "Option::is_none")] pub supports_distributed_training: Option<bool>, /// <p>A list of <code>ChannelSpecification</code> objects, which specify the input sources to be used by the algorithm.</p> #[serde(rename = "TrainingChannels")] pub training_channels: Vec<ChannelSpecification>, /// <p>The Amazon ECR registry path of the Docker image that contains the training algorithm.</p> #[serde(rename = "TrainingImage")] pub training_image: String, /// <p>An MD5 hash of the training algorithm that identifies the Docker image used for training.</p> #[serde(rename = "TrainingImageDigest")] #[serde(skip_serializing_if = "Option::is_none")] pub training_image_digest: Option<String>, } /// <p>Describes the location of the channel data.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct TransformDataSource { /// <p>The S3 location of the data source that is associated with a channel.</p> #[serde(rename = "S3DataSource")] pub s3_data_source: TransformS3DataSource, } /// <p>Describes the input source of a transform job and the way the transform job consumes it.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct TransformInput { /// <p>If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is <code>None</code>.</p> #[serde(rename = "CompressionType")] #[serde(skip_serializing_if = "Option::is_none")] pub compression_type: Option<String>, /// <p>The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.</p> #[serde(rename = "ContentType")] #[serde(skip_serializing_if = "Option::is_none")] pub content_type: Option<String>, /// <p>Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.</p> #[serde(rename = "DataSource")] pub data_source: TransformDataSource, /// <p><p>The method to use to split the transform job's data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for <code>SplitType</code> is <code>None</code>, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to <code>Line</code> to split records on a newline character boundary. <code>SplitType</code> also supports a number of record-oriented binary data formats.</p> <p>When splitting is enabled, the size of a mini-batch depends on the values of the <code>BatchStrategy</code> and <code>MaxPayloadInMB</code> parameters. When the value of <code>BatchStrategy</code> is <code>MultiRecord</code>, Amazon SageMaker sends the maximum number of records in each request, up to the <code>MaxPayloadInMB</code> limit. If the value of <code>BatchStrategy</code> is <code>SingleRecord</code>, Amazon SageMaker sends individual records in each request.</p> <note> <p>Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of <code>BatchStrategy</code> is set to <code>SingleRecord</code>. Padding is not removed if the value of <code>BatchStrategy</code> is set to <code>MultiRecord</code>.</p> <p>For more information about the RecordIO, see <a href="http://mxnet.io/architecture/note_data_loading.html#data-format">Data Format</a> in the MXNet documentation. For more information about the TFRecord, see <a href="https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data">Consuming TFRecord data</a> in the TensorFlow documentation.</p> </note></p> #[serde(rename = "SplitType")] #[serde(skip_serializing_if = "Option::is_none")] pub split_type: Option<String>, } /// <p>Defines the input needed to run a transform job using the inference specification specified in the algorithm.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct TransformJobDefinition { /// <p>A string that determines the number of records included in a single mini-batch.</p> <p> <code>SingleRecord</code> means only one record is used per mini-batch. <code>MultiRecord</code> means a mini-batch is set to contain as many records that can fit within the <code>MaxPayloadInMB</code> limit.</p> #[serde(rename = "BatchStrategy")] #[serde(skip_serializing_if = "Option::is_none")] pub batch_strategy: Option<String>, /// <p>The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.</p> #[serde(rename = "Environment")] #[serde(skip_serializing_if = "Option::is_none")] pub environment: Option<::std::collections::HashMap<String, String>>, /// <p>The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.</p> #[serde(rename = "MaxConcurrentTransforms")] #[serde(skip_serializing_if = "Option::is_none")] pub max_concurrent_transforms: Option<i64>, /// <p>The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).</p> #[serde(rename = "MaxPayloadInMB")] #[serde(skip_serializing_if = "Option::is_none")] pub max_payload_in_mb: Option<i64>, /// <p>A description of the input source and the way the transform job consumes it.</p> #[serde(rename = "TransformInput")] pub transform_input: TransformInput, /// <p>Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> #[serde(rename = "TransformOutput")] pub transform_output: TransformOutput, /// <p>Identifies the ML compute instances for the transform job.</p> #[serde(rename = "TransformResources")] pub transform_resources: TransformResources, } /// <p>Provides a summary of a transform job. Multiple <code>TransformJobSummary</code> objects are returned as a list after in response to a <a>ListTransformJobs</a> call.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct TransformJobSummary { /// <p>A timestamp that shows when the transform Job was created.</p> #[serde(rename = "CreationTime")] pub creation_time: f64, /// <p>If the transform job failed, the reason it failed.</p> #[serde(rename = "FailureReason")] #[serde(skip_serializing_if = "Option::is_none")] pub failure_reason: Option<String>, /// <p>Indicates when the transform job was last modified.</p> #[serde(rename = "LastModifiedTime")] #[serde(skip_serializing_if = "Option::is_none")] pub last_modified_time: Option<f64>, /// <p>Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.</p> #[serde(rename = "TransformEndTime")] #[serde(skip_serializing_if = "Option::is_none")] pub transform_end_time: Option<f64>, /// <p>The Amazon Resource Name (ARN) of the transform job.</p> #[serde(rename = "TransformJobArn")] pub transform_job_arn: String, /// <p>The name of the transform job.</p> #[serde(rename = "TransformJobName")] pub transform_job_name: String, /// <p>The status of the transform job.</p> #[serde(rename = "TransformJobStatus")] pub transform_job_status: String, } /// <p>Describes the results of a transform job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct TransformOutput { /// <p>The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.</p> #[serde(rename = "Accept")] #[serde(skip_serializing_if = "Option::is_none")] pub accept: Option<String>, /// <p>Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify <code>None</code>. To add a newline character at the end of every transformed record, specify <code>Line</code>.</p> #[serde(rename = "AssembleWith")] #[serde(skip_serializing_if = "Option::is_none")] pub assemble_with: Option<String>, /// <p>The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The <code>KmsKeyId</code> can be any of the following formats: </p> <ul> <li> <p>// KMS Key ID</p> <p> <code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// KMS Key Alias</p> <p> <code>"alias/ExampleAlias"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key Alias</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"</code> </p> </li> </ul> <p>If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see <a href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS-Managed Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i> </p> <p>The KMS key policy must grant permission to the IAM role that you specify in your <code>CreateTramsformJob</code> request. For more information, see <a href="http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using Key Policies in AWS KMS</a> in the <i>AWS Key Management Service Developer Guide</i>.</p> #[serde(rename = "KmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub kms_key_id: Option<String>, /// <p>The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, <code>s3://bucket-name/key-name-prefix</code>.</p> <p>For every S3 object used as input for the transform job, batch transform stores the transformed data with an .<code>out</code> suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at <code>s3://bucket-name/input-name-prefix/dataset01/data.csv</code>, batch transform stores the transformed data at <code>s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out</code>. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an .<code>out</code> file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.</p> #[serde(rename = "S3OutputPath")] pub s3_output_path: String, } /// <p>Describes the resources, including ML instance types and ML instance count, to use for transform job.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct TransformResources { /// <p>The number of ML compute instances to use in the transform job. For distributed transform, provide a value greater than 1. The default value is <code>1</code>.</p> #[serde(rename = "InstanceCount")] pub instance_count: i64, /// <p>The ML compute instance type for the transform job. For using built-in algorithms to transform moderately sized datasets, ml.m4.xlarge or <code>ml.m5.large</code> should suffice. There is no default value for <code>InstanceType</code>.</p> #[serde(rename = "InstanceType")] pub instance_type: String, /// <p><p>The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The <code>VolumeKmsKeyId</code> can be any of the following formats:</p> <ul> <li> <p>// KMS Key ID</p> <p> <code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> </ul></p> #[serde(rename = "VolumeKmsKeyId")] #[serde(skip_serializing_if = "Option::is_none")] pub volume_kms_key_id: Option<String>, } /// <p>Describes the S3 data source.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct TransformS3DataSource { /// <p>If you choose <code>S3Prefix</code>, <code>S3Uri</code> identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform. </p> <p>If you choose <code>ManifestFile</code>, <code>S3Uri</code> identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform. </p> <p>The following values are compatible: <code>ManifestFile</code>, <code>S3Prefix</code> </p> <p>The following value is not compatible: <code>AugmentedManifestFile</code> </p> #[serde(rename = "S3DataType")] pub s3_data_type: String, /// <p><p>Depending on the value specified for the <code>S3DataType</code>, identifies either a key name prefix or a manifest. For example:</p> <ul> <li> <p> A key name prefix might look like this: <code>s3://bucketname/exampleprefix</code>. </p> </li> <li> <p> A manifest might look like this: <code>s3://bucketname/example.manifest</code> </p> <p> The manifest is an S3 object which is a JSON file with the following format: </p> <p> <code>[</code> </p> <p> <code> {"prefix": "s3://customer<em>bucket/some/prefix/"},</code> </p> <p> <code> "relative/path/to/custdata-1",</code> </p> <p> <code> "relative/path/custdata-2",</code> </p> <p> <code> ...</code> </p> <p> <code> ]</code> </p> <p> The preceding JSON matches the following <code>S3Uris</code>: </p> <p> <code>s3://customer</em>bucket/some/prefix/relative/path/to/custdata-1</code> </p> <p> <code>s3://customer_bucket/some/prefix/relative/path/custdata-1</code> </p> <p> <code>...</code> </p> <p> The complete set of <code>S3Uris</code> in this manifest constitutes the input data for the channel for this datasource. The object that each <code>S3Uris</code> points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.</p> </li> </ul></p> #[serde(rename = "S3Uri")] pub s3_uri: String, } /// <p>Represents an amount of money in United States dollars/</p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct USD { /// <p>The fractional portion, in cents, of the amount. </p> #[serde(rename = "Cents")] #[serde(skip_serializing_if = "Option::is_none")] pub cents: Option<i64>, /// <p>The whole number of dollars in the amount.</p> #[serde(rename = "Dollars")] #[serde(skip_serializing_if = "Option::is_none")] pub dollars: Option<i64>, /// <p>Fractions of a cent, in tenths.</p> #[serde(rename = "TenthFractionsOfACent")] #[serde(skip_serializing_if = "Option::is_none")] pub tenth_fractions_of_a_cent: Option<i64>, } /// <p>Provided configuration information for the worker UI for a labeling job. </p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct UiConfig { /// <p>The Amazon S3 bucket location of the UI template. For more information about the contents of a UI template, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html"> Creating Your Custom Labeling Task Template</a>.</p> #[serde(rename = "UiTemplateS3Uri")] pub ui_template_s3_uri: String, } /// <p>The Liquid template for the worker user interface.</p> #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct UiTemplate { /// <p>The content of the Liquid template for the worker user interface.</p> #[serde(rename = "Content")] pub content: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct UpdateCodeRepositoryInput { /// <p>The name of the Git repository to update.</p> #[serde(rename = "CodeRepositoryName")] pub code_repository_name: String, /// <p>The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of <code>AWSCURRENT</code> and must be in the following format:</p> <p> <code>{"username": <i>UserName</i>, "password": <i>Password</i>}</code> </p> #[serde(rename = "GitConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub git_config: Option<GitConfigForUpdate>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct UpdateCodeRepositoryOutput { /// <p>The ARN of the Git repository.</p> #[serde(rename = "CodeRepositoryArn")] pub code_repository_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct UpdateEndpointInput { /// <p>The name of the new endpoint configuration.</p> #[serde(rename = "EndpointConfigName")] pub endpoint_config_name: String, /// <p>The name of the endpoint whose configuration you want to update.</p> #[serde(rename = "EndpointName")] pub endpoint_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct UpdateEndpointOutput { /// <p>The Amazon Resource Name (ARN) of the endpoint.</p> #[serde(rename = "EndpointArn")] pub endpoint_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct UpdateEndpointWeightsAndCapacitiesInput { /// <p>An object that provides new capacity and weight values for a variant.</p> #[serde(rename = "DesiredWeightsAndCapacities")] pub desired_weights_and_capacities: Vec<DesiredWeightAndCapacity>, /// <p>The name of an existing Amazon SageMaker endpoint.</p> #[serde(rename = "EndpointName")] pub endpoint_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct UpdateEndpointWeightsAndCapacitiesOutput { /// <p>The Amazon Resource Name (ARN) of the updated endpoint.</p> #[serde(rename = "EndpointArn")] pub endpoint_arn: String, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct UpdateNotebookInstanceInput { /// <p>A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>.</p> #[serde(rename = "AcceleratorTypes")] #[serde(skip_serializing_if = "Option::is_none")] pub accelerator_types: Option<Vec<String>>, /// <p>An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p> #[serde(rename = "AdditionalCodeRepositories")] #[serde(skip_serializing_if = "Option::is_none")] pub additional_code_repositories: Option<Vec<String>>, /// <p>The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p> #[serde(rename = "DefaultCodeRepository")] #[serde(skip_serializing_if = "Option::is_none")] pub default_code_repository: Option<String>, /// <p>A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.</p> #[serde(rename = "DisassociateAcceleratorTypes")] #[serde(skip_serializing_if = "Option::is_none")] pub disassociate_accelerator_types: Option<bool>, /// <p>A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.</p> #[serde(rename = "DisassociateAdditionalCodeRepositories")] #[serde(skip_serializing_if = "Option::is_none")] pub disassociate_additional_code_repositories: Option<bool>, /// <p>The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.</p> #[serde(rename = "DisassociateDefaultCodeRepository")] #[serde(skip_serializing_if = "Option::is_none")] pub disassociate_default_code_repository: Option<bool>, /// <p>Set to <code>true</code> to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.</p> #[serde(rename = "DisassociateLifecycleConfig")] #[serde(skip_serializing_if = "Option::is_none")] pub disassociate_lifecycle_config: Option<bool>, /// <p>The Amazon ML compute instance type.</p> #[serde(rename = "InstanceType")] #[serde(skip_serializing_if = "Option::is_none")] pub instance_type: Option<String>, /// <p>The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p> #[serde(rename = "LifecycleConfigName")] #[serde(skip_serializing_if = "Option::is_none")] pub lifecycle_config_name: Option<String>, /// <p>The name of the notebook instance to update.</p> #[serde(rename = "NotebookInstanceName")] pub notebook_instance_name: String, /// <p><p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note></p> #[serde(rename = "RoleArn")] #[serde(skip_serializing_if = "Option::is_none")] pub role_arn: Option<String>, /// <p><p>Whether root access is enabled or disabled for users of the notebook instance. The default value is <code>Enabled</code>.</p> <note> <p>If you set this to <code>Disabled</code>, users don't have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions.</p> </note></p> #[serde(rename = "RootAccess")] #[serde(skip_serializing_if = "Option::is_none")] pub root_access: Option<String>, /// <p>The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.</p> #[serde(rename = "VolumeSizeInGB")] #[serde(skip_serializing_if = "Option::is_none")] pub volume_size_in_gb: Option<i64>, } #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct UpdateNotebookInstanceLifecycleConfigInput { /// <p>The name of the lifecycle configuration.</p> #[serde(rename = "NotebookInstanceLifecycleConfigName")] pub notebook_instance_lifecycle_config_name: String, /// <p>The shell script that runs only once, when you create a notebook instance</p> #[serde(rename = "OnCreate")] #[serde(skip_serializing_if = "Option::is_none")] pub on_create: Option<Vec<NotebookInstanceLifecycleHook>>, /// <p>The shell script that runs every time you start a notebook instance, including when you create the notebook instance.</p> #[serde(rename = "OnStart")] #[serde(skip_serializing_if = "Option::is_none")] pub on_start: Option<Vec<NotebookInstanceLifecycleHook>>, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct UpdateNotebookInstanceLifecycleConfigOutput {} #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct UpdateNotebookInstanceOutput {} #[derive(Default, Debug, Clone, PartialEq, Serialize)] pub struct UpdateWorkteamRequest { /// <p>An updated description for the work team.</p> #[serde(rename = "Description")] #[serde(skip_serializing_if = "Option::is_none")] pub description: Option<String>, /// <p>A list of <code>MemberDefinition</code> objects that contain the updated work team members.</p> #[serde(rename = "MemberDefinitions")] #[serde(skip_serializing_if = "Option::is_none")] pub member_definitions: Option<Vec<MemberDefinition>>, /// <p>Configures SNS topic notifications for available or expiring work items</p> #[serde(rename = "NotificationConfiguration")] #[serde(skip_serializing_if = "Option::is_none")] pub notification_configuration: Option<NotificationConfiguration>, /// <p>The name of the work team to update.</p> #[serde(rename = "WorkteamName")] pub workteam_name: String, } #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct UpdateWorkteamResponse { /// <p>A <code>Workteam</code> object that describes the updated work team.</p> #[serde(rename = "Workteam")] pub workteam: Workteam, } /// <p>Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html">Protect Endpoints by Using an Amazon Virtual Private Cloud</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>. </p> #[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)] pub struct VpcConfig { /// <p>The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the <code>Subnets</code> field.</p> #[serde(rename = "SecurityGroupIds")] pub security_group_ids: Vec<String>, /// <p><p>The ID of the subnets in the VPC to which you want to connect your training job or model. </p> <note> <p>Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.</p> </note></p> #[serde(rename = "Subnets")] pub subnets: Vec<String>, } /// <p>Provides details about a labeling work team.</p> #[derive(Default, Debug, Clone, PartialEq, Deserialize)] #[cfg_attr(test, derive(Serialize))] pub struct Workteam { /// <p>The date and time that the work team was created (timestamp).</p> #[serde(rename = "CreateDate")] #[serde(skip_serializing_if = "Option::is_none")] pub create_date: Option<f64>, /// <p>A description of the work team.</p> #[serde(rename = "Description")] pub description: String, /// <p>The date and time that the work team was last updated (timestamp).</p> #[serde(rename = "LastUpdatedDate")] #[serde(skip_serializing_if = "Option::is_none")] pub last_updated_date: Option<f64>, /// <p>The Amazon Cognito user groups that make up the work team.</p> #[serde(rename = "MemberDefinitions")] pub member_definitions: Vec<MemberDefinition>, #[serde(rename = "NotificationConfiguration")] #[serde(skip_serializing_if = "Option::is_none")] pub notification_configuration: Option<NotificationConfiguration>, /// <p>The Amazon Marketplace identifier for a vendor's work team.</p> #[serde(rename = "ProductListingIds")] #[serde(skip_serializing_if = "Option::is_none")] pub product_listing_ids: Option<Vec<String>>, /// <p>The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.</p> #[serde(rename = "SubDomain")] #[serde(skip_serializing_if = "Option::is_none")] pub sub_domain: Option<String>, /// <p>The Amazon Resource Name (ARN) that identifies the work team.</p> #[serde(rename = "WorkteamArn")] pub workteam_arn: String, /// <p>The name of the work team.</p> #[serde(rename = "WorkteamName")] pub workteam_name: String, } /// Errors returned by AddTags #[derive(Debug, PartialEq)] pub enum AddTagsError {} impl AddTagsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<AddTagsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for AddTagsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for AddTagsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by CreateAlgorithm #[derive(Debug, PartialEq)] pub enum CreateAlgorithmError {} impl CreateAlgorithmError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateAlgorithmError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateAlgorithmError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateAlgorithmError { fn description(&self) -> &str { match *self {} } } /// Errors returned by CreateCodeRepository #[derive(Debug, PartialEq)] pub enum CreateCodeRepositoryError {} impl CreateCodeRepositoryError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateCodeRepositoryError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateCodeRepositoryError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateCodeRepositoryError { fn description(&self) -> &str { match *self {} } } /// Errors returned by CreateCompilationJob #[derive(Debug, PartialEq)] pub enum CreateCompilationJobError { /// <p>Resource being accessed is in use.</p> ResourceInUse(String), /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateCompilationJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateCompilationJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceInUse" => { return RusotoError::Service(CreateCompilationJobError::ResourceInUse(err.msg)) } "ResourceLimitExceeded" => { return RusotoError::Service(CreateCompilationJobError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateCompilationJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateCompilationJobError { fn description(&self) -> &str { match *self { CreateCompilationJobError::ResourceInUse(ref cause) => cause, CreateCompilationJobError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateEndpoint #[derive(Debug, PartialEq)] pub enum CreateEndpointError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateEndpointError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateEndpointError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service(CreateEndpointError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateEndpointError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateEndpointError { fn description(&self) -> &str { match *self { CreateEndpointError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateEndpointConfig #[derive(Debug, PartialEq)] pub enum CreateEndpointConfigError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateEndpointConfigError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateEndpointConfigError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service(CreateEndpointConfigError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateEndpointConfigError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateEndpointConfigError { fn description(&self) -> &str { match *self { CreateEndpointConfigError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateHyperParameterTuningJob #[derive(Debug, PartialEq)] pub enum CreateHyperParameterTuningJobError { /// <p>Resource being accessed is in use.</p> ResourceInUse(String), /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateHyperParameterTuningJobError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<CreateHyperParameterTuningJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceInUse" => { return RusotoError::Service(CreateHyperParameterTuningJobError::ResourceInUse( err.msg, )) } "ResourceLimitExceeded" => { return RusotoError::Service( CreateHyperParameterTuningJobError::ResourceLimitExceeded(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateHyperParameterTuningJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateHyperParameterTuningJobError { fn description(&self) -> &str { match *self { CreateHyperParameterTuningJobError::ResourceInUse(ref cause) => cause, CreateHyperParameterTuningJobError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateLabelingJob #[derive(Debug, PartialEq)] pub enum CreateLabelingJobError { /// <p>Resource being accessed is in use.</p> ResourceInUse(String), /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateLabelingJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateLabelingJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceInUse" => { return RusotoError::Service(CreateLabelingJobError::ResourceInUse(err.msg)) } "ResourceLimitExceeded" => { return RusotoError::Service(CreateLabelingJobError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateLabelingJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateLabelingJobError { fn description(&self) -> &str { match *self { CreateLabelingJobError::ResourceInUse(ref cause) => cause, CreateLabelingJobError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateModel #[derive(Debug, PartialEq)] pub enum CreateModelError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateModelError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateModelError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service(CreateModelError::ResourceLimitExceeded(err.msg)) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateModelError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateModelError { fn description(&self) -> &str { match *self { CreateModelError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateModelPackage #[derive(Debug, PartialEq)] pub enum CreateModelPackageError {} impl CreateModelPackageError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateModelPackageError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateModelPackageError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateModelPackageError { fn description(&self) -> &str { match *self {} } } /// Errors returned by CreateNotebookInstance #[derive(Debug, PartialEq)] pub enum CreateNotebookInstanceError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateNotebookInstanceError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateNotebookInstanceError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service( CreateNotebookInstanceError::ResourceLimitExceeded(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateNotebookInstanceError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateNotebookInstanceError { fn description(&self) -> &str { match *self { CreateNotebookInstanceError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateNotebookInstanceLifecycleConfig #[derive(Debug, PartialEq)] pub enum CreateNotebookInstanceLifecycleConfigError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateNotebookInstanceLifecycleConfigError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<CreateNotebookInstanceLifecycleConfigError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service( CreateNotebookInstanceLifecycleConfigError::ResourceLimitExceeded(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateNotebookInstanceLifecycleConfigError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateNotebookInstanceLifecycleConfigError { fn description(&self) -> &str { match *self { CreateNotebookInstanceLifecycleConfigError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreatePresignedNotebookInstanceUrl #[derive(Debug, PartialEq)] pub enum CreatePresignedNotebookInstanceUrlError {} impl CreatePresignedNotebookInstanceUrlError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<CreatePresignedNotebookInstanceUrlError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreatePresignedNotebookInstanceUrlError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreatePresignedNotebookInstanceUrlError { fn description(&self) -> &str { match *self {} } } /// Errors returned by CreateTrainingJob #[derive(Debug, PartialEq)] pub enum CreateTrainingJobError { /// <p>Resource being accessed is in use.</p> ResourceInUse(String), /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateTrainingJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateTrainingJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceInUse" => { return RusotoError::Service(CreateTrainingJobError::ResourceInUse(err.msg)) } "ResourceLimitExceeded" => { return RusotoError::Service(CreateTrainingJobError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateTrainingJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateTrainingJobError { fn description(&self) -> &str { match *self { CreateTrainingJobError::ResourceInUse(ref cause) => cause, CreateTrainingJobError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateTransformJob #[derive(Debug, PartialEq)] pub enum CreateTransformJobError { /// <p>Resource being accessed is in use.</p> ResourceInUse(String), /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateTransformJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateTransformJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceInUse" => { return RusotoError::Service(CreateTransformJobError::ResourceInUse(err.msg)) } "ResourceLimitExceeded" => { return RusotoError::Service(CreateTransformJobError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateTransformJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateTransformJobError { fn description(&self) -> &str { match *self { CreateTransformJobError::ResourceInUse(ref cause) => cause, CreateTransformJobError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by CreateWorkteam #[derive(Debug, PartialEq)] pub enum CreateWorkteamError { /// <p>Resource being accessed is in use.</p> ResourceInUse(String), /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl CreateWorkteamError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateWorkteamError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceInUse" => { return RusotoError::Service(CreateWorkteamError::ResourceInUse(err.msg)) } "ResourceLimitExceeded" => { return RusotoError::Service(CreateWorkteamError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for CreateWorkteamError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for CreateWorkteamError { fn description(&self) -> &str { match *self { CreateWorkteamError::ResourceInUse(ref cause) => cause, CreateWorkteamError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by DeleteAlgorithm #[derive(Debug, PartialEq)] pub enum DeleteAlgorithmError {} impl DeleteAlgorithmError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteAlgorithmError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteAlgorithmError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteAlgorithmError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteCodeRepository #[derive(Debug, PartialEq)] pub enum DeleteCodeRepositoryError {} impl DeleteCodeRepositoryError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteCodeRepositoryError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteCodeRepositoryError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteCodeRepositoryError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteEndpoint #[derive(Debug, PartialEq)] pub enum DeleteEndpointError {} impl DeleteEndpointError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteEndpointError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteEndpointError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteEndpointError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteEndpointConfig #[derive(Debug, PartialEq)] pub enum DeleteEndpointConfigError {} impl DeleteEndpointConfigError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteEndpointConfigError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteEndpointConfigError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteEndpointConfigError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteModel #[derive(Debug, PartialEq)] pub enum DeleteModelError {} impl DeleteModelError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteModelError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteModelError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteModelError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteModelPackage #[derive(Debug, PartialEq)] pub enum DeleteModelPackageError {} impl DeleteModelPackageError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteModelPackageError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteModelPackageError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteModelPackageError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteNotebookInstance #[derive(Debug, PartialEq)] pub enum DeleteNotebookInstanceError {} impl DeleteNotebookInstanceError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteNotebookInstanceError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteNotebookInstanceError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteNotebookInstanceError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteNotebookInstanceLifecycleConfig #[derive(Debug, PartialEq)] pub enum DeleteNotebookInstanceLifecycleConfigError {} impl DeleteNotebookInstanceLifecycleConfigError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<DeleteNotebookInstanceLifecycleConfigError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteNotebookInstanceLifecycleConfigError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteNotebookInstanceLifecycleConfigError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteTags #[derive(Debug, PartialEq)] pub enum DeleteTagsError {} impl DeleteTagsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteTagsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteTagsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteTagsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DeleteWorkteam #[derive(Debug, PartialEq)] pub enum DeleteWorkteamError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl DeleteWorkteamError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteWorkteamError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service(DeleteWorkteamError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DeleteWorkteamError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DeleteWorkteamError { fn description(&self) -> &str { match *self { DeleteWorkteamError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by DescribeAlgorithm #[derive(Debug, PartialEq)] pub enum DescribeAlgorithmError {} impl DescribeAlgorithmError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeAlgorithmError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeAlgorithmError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeAlgorithmError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeCodeRepository #[derive(Debug, PartialEq)] pub enum DescribeCodeRepositoryError {} impl DescribeCodeRepositoryError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeCodeRepositoryError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeCodeRepositoryError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeCodeRepositoryError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeCompilationJob #[derive(Debug, PartialEq)] pub enum DescribeCompilationJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl DescribeCompilationJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeCompilationJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service(DescribeCompilationJobError::ResourceNotFound( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeCompilationJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeCompilationJobError { fn description(&self) -> &str { match *self { DescribeCompilationJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by DescribeEndpoint #[derive(Debug, PartialEq)] pub enum DescribeEndpointError {} impl DescribeEndpointError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeEndpointError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeEndpointError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeEndpointError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeEndpointConfig #[derive(Debug, PartialEq)] pub enum DescribeEndpointConfigError {} impl DescribeEndpointConfigError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeEndpointConfigError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeEndpointConfigError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeEndpointConfigError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeHyperParameterTuningJob #[derive(Debug, PartialEq)] pub enum DescribeHyperParameterTuningJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl DescribeHyperParameterTuningJobError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<DescribeHyperParameterTuningJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service( DescribeHyperParameterTuningJobError::ResourceNotFound(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeHyperParameterTuningJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeHyperParameterTuningJobError { fn description(&self) -> &str { match *self { DescribeHyperParameterTuningJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by DescribeLabelingJob #[derive(Debug, PartialEq)] pub enum DescribeLabelingJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl DescribeLabelingJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeLabelingJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service(DescribeLabelingJobError::ResourceNotFound( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeLabelingJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeLabelingJobError { fn description(&self) -> &str { match *self { DescribeLabelingJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by DescribeModel #[derive(Debug, PartialEq)] pub enum DescribeModelError {} impl DescribeModelError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeModelError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeModelError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeModelError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeModelPackage #[derive(Debug, PartialEq)] pub enum DescribeModelPackageError {} impl DescribeModelPackageError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeModelPackageError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeModelPackageError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeModelPackageError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeNotebookInstance #[derive(Debug, PartialEq)] pub enum DescribeNotebookInstanceError {} impl DescribeNotebookInstanceError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeNotebookInstanceError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeNotebookInstanceError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeNotebookInstanceError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeNotebookInstanceLifecycleConfig #[derive(Debug, PartialEq)] pub enum DescribeNotebookInstanceLifecycleConfigError {} impl DescribeNotebookInstanceLifecycleConfigError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<DescribeNotebookInstanceLifecycleConfigError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeNotebookInstanceLifecycleConfigError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeNotebookInstanceLifecycleConfigError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeSubscribedWorkteam #[derive(Debug, PartialEq)] pub enum DescribeSubscribedWorkteamError {} impl DescribeSubscribedWorkteamError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<DescribeSubscribedWorkteamError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeSubscribedWorkteamError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeSubscribedWorkteamError { fn description(&self) -> &str { match *self {} } } /// Errors returned by DescribeTrainingJob #[derive(Debug, PartialEq)] pub enum DescribeTrainingJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl DescribeTrainingJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeTrainingJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service(DescribeTrainingJobError::ResourceNotFound( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeTrainingJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeTrainingJobError { fn description(&self) -> &str { match *self { DescribeTrainingJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by DescribeTransformJob #[derive(Debug, PartialEq)] pub enum DescribeTransformJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl DescribeTransformJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeTransformJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service(DescribeTransformJobError::ResourceNotFound( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeTransformJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeTransformJobError { fn description(&self) -> &str { match *self { DescribeTransformJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by DescribeWorkteam #[derive(Debug, PartialEq)] pub enum DescribeWorkteamError {} impl DescribeWorkteamError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeWorkteamError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for DescribeWorkteamError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for DescribeWorkteamError { fn description(&self) -> &str { match *self {} } } /// Errors returned by GetSearchSuggestions #[derive(Debug, PartialEq)] pub enum GetSearchSuggestionsError {} impl GetSearchSuggestionsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetSearchSuggestionsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for GetSearchSuggestionsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for GetSearchSuggestionsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListAlgorithms #[derive(Debug, PartialEq)] pub enum ListAlgorithmsError {} impl ListAlgorithmsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListAlgorithmsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListAlgorithmsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListAlgorithmsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListCodeRepositories #[derive(Debug, PartialEq)] pub enum ListCodeRepositoriesError {} impl ListCodeRepositoriesError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListCodeRepositoriesError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListCodeRepositoriesError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListCodeRepositoriesError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListCompilationJobs #[derive(Debug, PartialEq)] pub enum ListCompilationJobsError {} impl ListCompilationJobsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListCompilationJobsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListCompilationJobsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListCompilationJobsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListEndpointConfigs #[derive(Debug, PartialEq)] pub enum ListEndpointConfigsError {} impl ListEndpointConfigsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListEndpointConfigsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListEndpointConfigsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListEndpointConfigsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListEndpoints #[derive(Debug, PartialEq)] pub enum ListEndpointsError {} impl ListEndpointsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListEndpointsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListEndpointsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListEndpointsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListHyperParameterTuningJobs #[derive(Debug, PartialEq)] pub enum ListHyperParameterTuningJobsError {} impl ListHyperParameterTuningJobsError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<ListHyperParameterTuningJobsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListHyperParameterTuningJobsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListHyperParameterTuningJobsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListLabelingJobs #[derive(Debug, PartialEq)] pub enum ListLabelingJobsError {} impl ListLabelingJobsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListLabelingJobsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListLabelingJobsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListLabelingJobsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListLabelingJobsForWorkteam #[derive(Debug, PartialEq)] pub enum ListLabelingJobsForWorkteamError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl ListLabelingJobsForWorkteamError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<ListLabelingJobsForWorkteamError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service( ListLabelingJobsForWorkteamError::ResourceNotFound(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListLabelingJobsForWorkteamError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListLabelingJobsForWorkteamError { fn description(&self) -> &str { match *self { ListLabelingJobsForWorkteamError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by ListModelPackages #[derive(Debug, PartialEq)] pub enum ListModelPackagesError {} impl ListModelPackagesError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListModelPackagesError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListModelPackagesError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListModelPackagesError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListModels #[derive(Debug, PartialEq)] pub enum ListModelsError {} impl ListModelsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListModelsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListModelsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListModelsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListNotebookInstanceLifecycleConfigs #[derive(Debug, PartialEq)] pub enum ListNotebookInstanceLifecycleConfigsError {} impl ListNotebookInstanceLifecycleConfigsError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<ListNotebookInstanceLifecycleConfigsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListNotebookInstanceLifecycleConfigsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListNotebookInstanceLifecycleConfigsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListNotebookInstances #[derive(Debug, PartialEq)] pub enum ListNotebookInstancesError {} impl ListNotebookInstancesError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListNotebookInstancesError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListNotebookInstancesError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListNotebookInstancesError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListSubscribedWorkteams #[derive(Debug, PartialEq)] pub enum ListSubscribedWorkteamsError {} impl ListSubscribedWorkteamsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListSubscribedWorkteamsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListSubscribedWorkteamsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListSubscribedWorkteamsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListTags #[derive(Debug, PartialEq)] pub enum ListTagsError {} impl ListTagsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListTagsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListTagsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListTagsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListTrainingJobs #[derive(Debug, PartialEq)] pub enum ListTrainingJobsError {} impl ListTrainingJobsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListTrainingJobsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListTrainingJobsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListTrainingJobsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListTrainingJobsForHyperParameterTuningJob #[derive(Debug, PartialEq)] pub enum ListTrainingJobsForHyperParameterTuningJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl ListTrainingJobsForHyperParameterTuningJobError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<ListTrainingJobsForHyperParameterTuningJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service( ListTrainingJobsForHyperParameterTuningJobError::ResourceNotFound(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListTrainingJobsForHyperParameterTuningJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListTrainingJobsForHyperParameterTuningJobError { fn description(&self) -> &str { match *self { ListTrainingJobsForHyperParameterTuningJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by ListTransformJobs #[derive(Debug, PartialEq)] pub enum ListTransformJobsError {} impl ListTransformJobsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListTransformJobsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListTransformJobsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListTransformJobsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by ListWorkteams #[derive(Debug, PartialEq)] pub enum ListWorkteamsError {} impl ListWorkteamsError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListWorkteamsError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for ListWorkteamsError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for ListWorkteamsError { fn description(&self) -> &str { match *self {} } } /// Errors returned by RenderUiTemplate #[derive(Debug, PartialEq)] pub enum RenderUiTemplateError {} impl RenderUiTemplateError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<RenderUiTemplateError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for RenderUiTemplateError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for RenderUiTemplateError { fn description(&self) -> &str { match *self {} } } /// Errors returned by Search #[derive(Debug, PartialEq)] pub enum SearchError {} impl SearchError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<SearchError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for SearchError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for SearchError { fn description(&self) -> &str { match *self {} } } /// Errors returned by StartNotebookInstance #[derive(Debug, PartialEq)] pub enum StartNotebookInstanceError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl StartNotebookInstanceError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartNotebookInstanceError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service(StartNotebookInstanceError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for StartNotebookInstanceError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for StartNotebookInstanceError { fn description(&self) -> &str { match *self { StartNotebookInstanceError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by StopCompilationJob #[derive(Debug, PartialEq)] pub enum StopCompilationJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl StopCompilationJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopCompilationJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service(StopCompilationJobError::ResourceNotFound(err.msg)) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for StopCompilationJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for StopCompilationJobError { fn description(&self) -> &str { match *self { StopCompilationJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by StopHyperParameterTuningJob #[derive(Debug, PartialEq)] pub enum StopHyperParameterTuningJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl StopHyperParameterTuningJobError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<StopHyperParameterTuningJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service( StopHyperParameterTuningJobError::ResourceNotFound(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for StopHyperParameterTuningJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for StopHyperParameterTuningJobError { fn description(&self) -> &str { match *self { StopHyperParameterTuningJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by StopLabelingJob #[derive(Debug, PartialEq)] pub enum StopLabelingJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl StopLabelingJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopLabelingJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service(StopLabelingJobError::ResourceNotFound(err.msg)) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for StopLabelingJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for StopLabelingJobError { fn description(&self) -> &str { match *self { StopLabelingJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by StopNotebookInstance #[derive(Debug, PartialEq)] pub enum StopNotebookInstanceError {} impl StopNotebookInstanceError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopNotebookInstanceError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for StopNotebookInstanceError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for StopNotebookInstanceError { fn description(&self) -> &str { match *self {} } } /// Errors returned by StopTrainingJob #[derive(Debug, PartialEq)] pub enum StopTrainingJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl StopTrainingJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopTrainingJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service(StopTrainingJobError::ResourceNotFound(err.msg)) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for StopTrainingJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for StopTrainingJobError { fn description(&self) -> &str { match *self { StopTrainingJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by StopTransformJob #[derive(Debug, PartialEq)] pub enum StopTransformJobError { /// <p>Resource being access is not found.</p> ResourceNotFound(String), } impl StopTransformJobError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopTransformJobError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceNotFound" => { return RusotoError::Service(StopTransformJobError::ResourceNotFound(err.msg)) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for StopTransformJobError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for StopTransformJobError { fn description(&self) -> &str { match *self { StopTransformJobError::ResourceNotFound(ref cause) => cause, } } } /// Errors returned by UpdateCodeRepository #[derive(Debug, PartialEq)] pub enum UpdateCodeRepositoryError {} impl UpdateCodeRepositoryError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateCodeRepositoryError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for UpdateCodeRepositoryError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for UpdateCodeRepositoryError { fn description(&self) -> &str { match *self {} } } /// Errors returned by UpdateEndpoint #[derive(Debug, PartialEq)] pub enum UpdateEndpointError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl UpdateEndpointError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateEndpointError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service(UpdateEndpointError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for UpdateEndpointError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for UpdateEndpointError { fn description(&self) -> &str { match *self { UpdateEndpointError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by UpdateEndpointWeightsAndCapacities #[derive(Debug, PartialEq)] pub enum UpdateEndpointWeightsAndCapacitiesError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl UpdateEndpointWeightsAndCapacitiesError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<UpdateEndpointWeightsAndCapacitiesError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service( UpdateEndpointWeightsAndCapacitiesError::ResourceLimitExceeded(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for UpdateEndpointWeightsAndCapacitiesError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for UpdateEndpointWeightsAndCapacitiesError { fn description(&self) -> &str { match *self { UpdateEndpointWeightsAndCapacitiesError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by UpdateNotebookInstance #[derive(Debug, PartialEq)] pub enum UpdateNotebookInstanceError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl UpdateNotebookInstanceError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateNotebookInstanceError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service( UpdateNotebookInstanceError::ResourceLimitExceeded(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for UpdateNotebookInstanceError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for UpdateNotebookInstanceError { fn description(&self) -> &str { match *self { UpdateNotebookInstanceError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by UpdateNotebookInstanceLifecycleConfig #[derive(Debug, PartialEq)] pub enum UpdateNotebookInstanceLifecycleConfigError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl UpdateNotebookInstanceLifecycleConfigError { pub fn from_response( res: BufferedHttpResponse, ) -> RusotoError<UpdateNotebookInstanceLifecycleConfigError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service( UpdateNotebookInstanceLifecycleConfigError::ResourceLimitExceeded(err.msg), ) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for UpdateNotebookInstanceLifecycleConfigError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for UpdateNotebookInstanceLifecycleConfigError { fn description(&self) -> &str { match *self { UpdateNotebookInstanceLifecycleConfigError::ResourceLimitExceeded(ref cause) => cause, } } } /// Errors returned by UpdateWorkteam #[derive(Debug, PartialEq)] pub enum UpdateWorkteamError { /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p> ResourceLimitExceeded(String), } impl UpdateWorkteamError { pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateWorkteamError> { if let Some(err) = proto::json::Error::parse(&res) { match err.typ.as_str() { "ResourceLimitExceeded" => { return RusotoError::Service(UpdateWorkteamError::ResourceLimitExceeded( err.msg, )) } "ValidationException" => return RusotoError::Validation(err.msg), _ => {} } } return RusotoError::Unknown(res); } } impl fmt::Display for UpdateWorkteamError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.description()) } } impl Error for UpdateWorkteamError { fn description(&self) -> &str { match *self { UpdateWorkteamError::ResourceLimitExceeded(ref cause) => cause, } } } /// Trait representing the capabilities of the SageMaker API. SageMaker clients implement this trait. pub trait SageMaker { /// <p><p>Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.</p> <p>Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see <a href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS Tagging Strategies</a>.</p> <note> <p>Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the <code>Tags</code> parameter of <a>CreateHyperParameterTuningJob</a> </p> </note></p> fn add_tags(&self, input: AddTagsInput) -> RusotoFuture<AddTagsOutput, AddTagsError>; /// <p>Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.</p> fn create_algorithm( &self, input: CreateAlgorithmInput, ) -> RusotoFuture<CreateAlgorithmOutput, CreateAlgorithmError>; /// <p>Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.</p> <p>The repository can be hosted either in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository.</p> fn create_code_repository( &self, input: CreateCodeRepositoryInput, ) -> RusotoFuture<CreateCodeRepositoryOutput, CreateCodeRepositoryError>; /// <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p> <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p>A name for the compilation job</p> </li> <li> <p> Information about the input model artifacts </p> </li> <li> <p>The output location for the compiled model and the device (target) that the model runs on </p> </li> <li> <p> <code>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job</code> </p> </li> </ul> <p>You can also provide a <code>Tag</code> to track the model compilation job's resource use and costs. The response body contains the <code>CompilationJobArn</code> for the compiled job.</p> <p>To stop a model compilation job, use <a>StopCompilationJob</a>. To get information about a particular model compilation job, use <a>DescribeCompilationJob</a>. To get information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p> fn create_compilation_job( &self, input: CreateCompilationJobRequest, ) -> RusotoFuture<CreateCompilationJobResponse, CreateCompilationJobError>; /// <p>Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API. </p> <note> <p> Use this API only for hosting models using Amazon SageMaker hosting services. </p> <p> You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note> <p>The endpoint name must be unique within an AWS Region in your AWS account. </p> <p>When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. </p> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Creating</code>. After it creates the endpoint, it sets the status to <code>InService</code>. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API.</p> <p>For an example, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/ex1.html">Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker</a>. </p> <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see <a href="http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating AWS STS i an AWS Region</a> in the <i>AWS Identity and Access Management User Guide</i>.</p> fn create_endpoint( &self, input: CreateEndpointInput, ) -> RusotoFuture<CreateEndpointOutput, CreateEndpointError>; /// <p>Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the <code>CreateModel</code> API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p> <note> <p> Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production. </p> </note> <p>In the request, you define one or more <code>ProductionVariant</code>s, each of which identifies a model. Each <code>ProductionVariant</code> parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. </p> <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. </p> fn create_endpoint_config( &self, input: CreateEndpointConfigInput, ) -> RusotoFuture<CreateEndpointConfigOutput, CreateEndpointConfigError>; /// <p>Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.</p> fn create_hyper_parameter_tuning_job( &self, input: CreateHyperParameterTuningJobRequest, ) -> RusotoFuture<CreateHyperParameterTuningJobResponse, CreateHyperParameterTuningJobError>; /// <p>Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.</p> <p>You can select your workforce from one of three providers:</p> <ul> <li> <p>A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.</p> </li> <li> <p>One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas. </p> </li> <li> <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.</p> </li> </ul> <p>You can also use <i>automated data labeling</i> to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses <i>active learning</i> to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using Automated Data Labeling</a>.</p> <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a <i>manifest file</i> that describes the location of each object. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p> <p>The output can be used as the manifest file for another labeling job or as training data for your machine learning models.</p> fn create_labeling_job( &self, input: CreateLabelingJobRequest, ) -> RusotoFuture<CreateLabelingJobResponse, CreateLabelingJobError>; /// <p>Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions.</p> <p>Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job.</p> <p>To host your model, you create an endpoint configuration with the <code>CreateEndpointConfig</code> API, and then create an endpoint with the <code>CreateEndpoint</code> API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. </p> <p>To run a batch transform using your model, you start a job with the <code>CreateTransformJob</code> API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.</p> <p>In the <code>CreateModel</code> request, you must define a container with the <code>PrimaryContainer</code> parameter.</p> <p>In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.</p> fn create_model( &self, input: CreateModelInput, ) -> RusotoFuture<CreateModelOutput, CreateModelError>; /// <p>Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.</p> <p>To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for <code>InferenceSpecification</code>. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for <code>SourceAlgorithmSpecification</code>.</p> fn create_model_package( &self, input: CreateModelPackageInput, ) -> RusotoFuture<CreateModelPackageOutput, CreateModelPackageError>; /// <p>Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. </p> <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. </p> <p>Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. </p> <p>After receiving the request, Amazon SageMaker does the following:</p> <ol> <li> <p>Creates a network interface in the Amazon SageMaker VPC.</p> </li> <li> <p>(Option) If you specified <code>SubnetId</code>, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.</p> </li> <li> <p>Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified <code>SubnetId</code> of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.</p> </li> </ol> <p>After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN).</p> <p>After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p> fn create_notebook_instance( &self, input: CreateNotebookInstanceInput, ) -> RusotoFuture<CreateNotebookInstanceOutput, CreateNotebookInstanceError>; /// <p>Creates a lifecycle configuration that you can associate with a notebook instance. A <i>lifecycle configuration</i> is a collection of shell scripts that run when you create or start a notebook instance.</p> <p>Each lifecycle configuration script has a limit of 16384 characters.</p> <p>The value of the <code>$PATH</code> environment variable that is available to both scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p> <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group <code>/aws/sagemaker/NotebookInstances</code> in log stream <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p> <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p> fn create_notebook_instance_lifecycle_config( &self, input: CreateNotebookInstanceLifecycleConfigInput, ) -> RusotoFuture< CreateNotebookInstanceLifecycleConfigOutput, CreateNotebookInstanceLifecycleConfigError, >; /// <p><p>Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose <code>Open</code> next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.</p> <p>You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. To restrict access, attach an IAM policy that denies access to this API unless the call comes from an IP address in the specified list to every AWS Identity and Access Management user, group, or role used to access the notebook instance. Use the <code>NotIpAddress</code> condition operator and the <code>aws:SourceIP</code> condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-ip-filter.html">Limit Access to a Notebook Instance by IP Address</a>.</p> <note> <p>The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.</p> </note></p> fn create_presigned_notebook_instance_url( &self, input: CreatePresignedNotebookInstanceUrlInput, ) -> RusotoFuture< CreatePresignedNotebookInstanceUrlOutput, CreatePresignedNotebookInstanceUrlError, >; /// <p>Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. </p> <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. </p> <p>In the request body, you provide the following: </p> <ul> <li> <p> <code>AlgorithmSpecification</code> - Identifies the training algorithm to use. </p> </li> <li> <p> <code>HyperParameters</code> - Specify these algorithm-specific parameters to influence the quality of the final model. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> </li> <li> <p> <code>InputDataConfig</code> - Describes the training dataset and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>OutputDataConfig</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training. </p> <p/> </li> <li> <p> <code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. </p> </li> <li> <p> <code>RoleARN</code> - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. </p> </li> <li> <p> <code>StoppingCondition</code> - Sets a duration for training. Use this parameter to cap model training costs. </p> </li> </ul> <p> For more information about Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p> fn create_training_job( &self, input: CreateTrainingJobRequest, ) -> RusotoFuture<CreateTrainingJobResponse, CreateTrainingJobError>; /// <p>Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.</p> <p>To perform batch transformations, you create a transform job and use the data that you have readily available.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p> <code>TransformJobName</code> - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.</p> </li> <li> <p> <code>ModelName</code> - Identifies the model to use. <code>ModelName</code> must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see <a>CreateModel</a>.</p> </li> <li> <p> <code>TransformInput</code> - Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>TransformOutput</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> </li> <li> <p> <code>TransformResources</code> - Identifies the ML compute instances for the transform job.</p> </li> </ul> <p> For more information about how batch transformation works Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">How It Works</a>. </p> fn create_transform_job( &self, input: CreateTransformJobRequest, ) -> RusotoFuture<CreateTransformJobResponse, CreateTransformJobError>; /// <p>Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.</p> <p>You cannot create more than 25 work teams in an account and region.</p> fn create_workteam( &self, input: CreateWorkteamRequest, ) -> RusotoFuture<CreateWorkteamResponse, CreateWorkteamError>; /// <p>Removes the specified algorithm from your account.</p> fn delete_algorithm( &self, input: DeleteAlgorithmInput, ) -> RusotoFuture<(), DeleteAlgorithmError>; /// <p>Deletes the specified Git repository from your account.</p> fn delete_code_repository( &self, input: DeleteCodeRepositoryInput, ) -> RusotoFuture<(), DeleteCodeRepositoryError>; /// <p>Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. </p> <p>Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the <a href="http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html">RevokeGrant</a> API call.</p> fn delete_endpoint(&self, input: DeleteEndpointInput) -> RusotoFuture<(), DeleteEndpointError>; /// <p>Deletes an endpoint configuration. The <code>DeleteEndpointConfig</code> API deletes only the specified configuration. It does not delete endpoints created using the configuration. </p> fn delete_endpoint_config( &self, input: DeleteEndpointConfigInput, ) -> RusotoFuture<(), DeleteEndpointConfigError>; /// <p>Deletes a model. The <code>DeleteModel</code> API deletes only the model entry that was created in Amazon SageMaker when you called the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html">CreateModel</a> API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model. </p> fn delete_model(&self, input: DeleteModelInput) -> RusotoFuture<(), DeleteModelError>; /// <p>Deletes a model package.</p> <p>A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.</p> fn delete_model_package( &self, input: DeleteModelPackageInput, ) -> RusotoFuture<(), DeleteModelPackageError>; /// <p><p> Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the <code>StopNotebookInstance</code> API. </p> <important> <p>When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance. </p> </important></p> fn delete_notebook_instance( &self, input: DeleteNotebookInstanceInput, ) -> RusotoFuture<(), DeleteNotebookInstanceError>; /// <p>Deletes a notebook instance lifecycle configuration.</p> fn delete_notebook_instance_lifecycle_config( &self, input: DeleteNotebookInstanceLifecycleConfigInput, ) -> RusotoFuture<(), DeleteNotebookInstanceLifecycleConfigError>; /// <p><p>Deletes the specified tags from an Amazon SageMaker resource.</p> <p>To list a resource's tags, use the <code>ListTags</code> API. </p> <note> <p>When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.</p> </note></p> fn delete_tags( &self, input: DeleteTagsInput, ) -> RusotoFuture<DeleteTagsOutput, DeleteTagsError>; /// <p>Deletes an existing work team. This operation can't be undone.</p> fn delete_workteam( &self, input: DeleteWorkteamRequest, ) -> RusotoFuture<DeleteWorkteamResponse, DeleteWorkteamError>; /// <p>Returns a description of the specified algorithm that is in your account.</p> fn describe_algorithm( &self, input: DescribeAlgorithmInput, ) -> RusotoFuture<DescribeAlgorithmOutput, DescribeAlgorithmError>; /// <p>Gets details about the specified Git repository.</p> fn describe_code_repository( &self, input: DescribeCodeRepositoryInput, ) -> RusotoFuture<DescribeCodeRepositoryOutput, DescribeCodeRepositoryError>; /// <p>Returns information about a model compilation job.</p> <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p> fn describe_compilation_job( &self, input: DescribeCompilationJobRequest, ) -> RusotoFuture<DescribeCompilationJobResponse, DescribeCompilationJobError>; /// <p>Returns the description of an endpoint.</p> fn describe_endpoint( &self, input: DescribeEndpointInput, ) -> RusotoFuture<DescribeEndpointOutput, DescribeEndpointError>; /// <p>Returns the description of an endpoint configuration created using the <code>CreateEndpointConfig</code> API.</p> fn describe_endpoint_config( &self, input: DescribeEndpointConfigInput, ) -> RusotoFuture<DescribeEndpointConfigOutput, DescribeEndpointConfigError>; /// <p>Gets a description of a hyperparameter tuning job.</p> fn describe_hyper_parameter_tuning_job( &self, input: DescribeHyperParameterTuningJobRequest, ) -> RusotoFuture<DescribeHyperParameterTuningJobResponse, DescribeHyperParameterTuningJobError>; /// <p>Gets information about a labeling job.</p> fn describe_labeling_job( &self, input: DescribeLabelingJobRequest, ) -> RusotoFuture<DescribeLabelingJobResponse, DescribeLabelingJobError>; /// <p>Describes a model that you created using the <code>CreateModel</code> API.</p> fn describe_model( &self, input: DescribeModelInput, ) -> RusotoFuture<DescribeModelOutput, DescribeModelError>; /// <p>Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace.</p> <p>To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.</p> fn describe_model_package( &self, input: DescribeModelPackageInput, ) -> RusotoFuture<DescribeModelPackageOutput, DescribeModelPackageError>; /// <p>Returns information about a notebook instance.</p> fn describe_notebook_instance( &self, input: DescribeNotebookInstanceInput, ) -> RusotoFuture<DescribeNotebookInstanceOutput, DescribeNotebookInstanceError>; /// <p>Returns a description of a notebook instance lifecycle configuration.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p> fn describe_notebook_instance_lifecycle_config( &self, input: DescribeNotebookInstanceLifecycleConfigInput, ) -> RusotoFuture< DescribeNotebookInstanceLifecycleConfigOutput, DescribeNotebookInstanceLifecycleConfigError, >; /// <p>Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.</p> fn describe_subscribed_workteam( &self, input: DescribeSubscribedWorkteamRequest, ) -> RusotoFuture<DescribeSubscribedWorkteamResponse, DescribeSubscribedWorkteamError>; /// <p>Returns information about a training job.</p> fn describe_training_job( &self, input: DescribeTrainingJobRequest, ) -> RusotoFuture<DescribeTrainingJobResponse, DescribeTrainingJobError>; /// <p>Returns information about a transform job.</p> fn describe_transform_job( &self, input: DescribeTransformJobRequest, ) -> RusotoFuture<DescribeTransformJobResponse, DescribeTransformJobError>; /// <p>Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).</p> fn describe_workteam( &self, input: DescribeWorkteamRequest, ) -> RusotoFuture<DescribeWorkteamResponse, DescribeWorkteamError>; /// <p>An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in <code>Search</code> queries. Provides suggestions for <code>HyperParameters</code>, <code>Tags</code>, and <code>Metrics</code>.</p> fn get_search_suggestions( &self, input: GetSearchSuggestionsRequest, ) -> RusotoFuture<GetSearchSuggestionsResponse, GetSearchSuggestionsError>; /// <p>Lists the machine learning algorithms that have been created.</p> fn list_algorithms( &self, input: ListAlgorithmsInput, ) -> RusotoFuture<ListAlgorithmsOutput, ListAlgorithmsError>; /// <p>Gets a list of the Git repositories in your account.</p> fn list_code_repositories( &self, input: ListCodeRepositoriesInput, ) -> RusotoFuture<ListCodeRepositoriesOutput, ListCodeRepositoriesError>; /// <p>Lists model compilation jobs that satisfy various filters.</p> <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get information about a particular model compilation job you have created, use <a>DescribeCompilationJob</a>.</p> fn list_compilation_jobs( &self, input: ListCompilationJobsRequest, ) -> RusotoFuture<ListCompilationJobsResponse, ListCompilationJobsError>; /// <p>Lists endpoint configurations.</p> fn list_endpoint_configs( &self, input: ListEndpointConfigsInput, ) -> RusotoFuture<ListEndpointConfigsOutput, ListEndpointConfigsError>; /// <p>Lists endpoints.</p> fn list_endpoints( &self, input: ListEndpointsInput, ) -> RusotoFuture<ListEndpointsOutput, ListEndpointsError>; /// <p>Gets a list of <a>HyperParameterTuningJobSummary</a> objects that describe the hyperparameter tuning jobs launched in your account.</p> fn list_hyper_parameter_tuning_jobs( &self, input: ListHyperParameterTuningJobsRequest, ) -> RusotoFuture<ListHyperParameterTuningJobsResponse, ListHyperParameterTuningJobsError>; /// <p>Gets a list of labeling jobs.</p> fn list_labeling_jobs( &self, input: ListLabelingJobsRequest, ) -> RusotoFuture<ListLabelingJobsResponse, ListLabelingJobsError>; /// <p>Gets a list of labeling jobs assigned to a specified work team.</p> fn list_labeling_jobs_for_workteam( &self, input: ListLabelingJobsForWorkteamRequest, ) -> RusotoFuture<ListLabelingJobsForWorkteamResponse, ListLabelingJobsForWorkteamError>; /// <p>Lists the model packages that have been created.</p> fn list_model_packages( &self, input: ListModelPackagesInput, ) -> RusotoFuture<ListModelPackagesOutput, ListModelPackagesError>; /// <p>Lists models created with the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html">CreateModel</a> API.</p> fn list_models( &self, input: ListModelsInput, ) -> RusotoFuture<ListModelsOutput, ListModelsError>; /// <p>Lists notebook instance lifestyle configurations created with the <a>CreateNotebookInstanceLifecycleConfig</a> API.</p> fn list_notebook_instance_lifecycle_configs( &self, input: ListNotebookInstanceLifecycleConfigsInput, ) -> RusotoFuture< ListNotebookInstanceLifecycleConfigsOutput, ListNotebookInstanceLifecycleConfigsError, >; /// <p>Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region. </p> fn list_notebook_instances( &self, input: ListNotebookInstancesInput, ) -> RusotoFuture<ListNotebookInstancesOutput, ListNotebookInstancesError>; /// <p>Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the <code>NameContains</code> parameter.</p> fn list_subscribed_workteams( &self, input: ListSubscribedWorkteamsRequest, ) -> RusotoFuture<ListSubscribedWorkteamsResponse, ListSubscribedWorkteamsError>; /// <p>Returns the tags for the specified Amazon SageMaker resource.</p> fn list_tags(&self, input: ListTagsInput) -> RusotoFuture<ListTagsOutput, ListTagsError>; /// <p>Lists training jobs.</p> fn list_training_jobs( &self, input: ListTrainingJobsRequest, ) -> RusotoFuture<ListTrainingJobsResponse, ListTrainingJobsError>; /// <p>Gets a list of <a>TrainingJobSummary</a> objects that describe the training jobs that a hyperparameter tuning job launched.</p> fn list_training_jobs_for_hyper_parameter_tuning_job( &self, input: ListTrainingJobsForHyperParameterTuningJobRequest, ) -> RusotoFuture< ListTrainingJobsForHyperParameterTuningJobResponse, ListTrainingJobsForHyperParameterTuningJobError, >; /// <p>Lists transform jobs.</p> fn list_transform_jobs( &self, input: ListTransformJobsRequest, ) -> RusotoFuture<ListTransformJobsResponse, ListTransformJobsError>; /// <p>Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the <code>NameContains</code> parameter.</p> fn list_workteams( &self, input: ListWorkteamsRequest, ) -> RusotoFuture<ListWorkteamsResponse, ListWorkteamsError>; /// <p>Renders the UI template so that you can preview the worker's experience. </p> fn render_ui_template( &self, input: RenderUiTemplateRequest, ) -> RusotoFuture<RenderUiTemplateResponse, RenderUiTemplateError>; /// <p>Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of <code>SearchResult</code> objects in the response. You can sort the search results by any resource property in a ascending or descending order.</p> <p>You can query against the following value types: numerical, text, Booleans, and timestamps.</p> fn search(&self, input: SearchRequest) -> RusotoFuture<SearchResponse, SearchError>; /// <p>Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to <code>InService</code>. A notebook instance's status must be <code>InService</code> before you can connect to your Jupyter notebook. </p> fn start_notebook_instance( &self, input: StartNotebookInstanceInput, ) -> RusotoFuture<(), StartNotebookInstanceError>; /// <p>Stops a model compilation job.</p> <p> To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal.</p> <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the <a>CompilationJobSummary$CompilationJobStatus</a> of the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the <a>CompilationJobSummary$CompilationJobStatus</a> to <code>Stopped</code>. </p> fn stop_compilation_job( &self, input: StopCompilationJobRequest, ) -> RusotoFuture<(), StopCompilationJobError>; /// <p>Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.</p> <p>All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the <code>Stopped</code> state, it releases all reserved resources for the tuning job.</p> fn stop_hyper_parameter_tuning_job( &self, input: StopHyperParameterTuningJobRequest, ) -> RusotoFuture<(), StopHyperParameterTuningJobError>; /// <p>Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.</p> fn stop_labeling_job( &self, input: StopLabelingJobRequest, ) -> RusotoFuture<(), StopLabelingJobError>; /// <p>Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call <code>StopNotebookInstance</code>.</p> <p>To access data on the ML storage volume for a notebook instance that has been terminated, call the <code>StartNotebookInstance</code> API. <code>StartNotebookInstance</code> launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work. </p> fn stop_notebook_instance( &self, input: StopNotebookInstanceInput, ) -> RusotoFuture<(), StopNotebookInstanceError>; /// <p>Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. </p> <p>When it receives a <code>StopTrainingJob</code> request, Amazon SageMaker changes the status of the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the status to <code>Stopped</code>.</p> fn stop_training_job( &self, input: StopTrainingJobRequest, ) -> RusotoFuture<(), StopTrainingJobError>; /// <p>Stops a transform job.</p> <p>When Amazon SageMaker receives a <code>StopTransformJob</code> request, the status of the job changes to <code>Stopping</code>. After Amazon SageMaker stops the job, the status is set to <code>Stopped</code>. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.</p> fn stop_transform_job( &self, input: StopTransformJobRequest, ) -> RusotoFuture<(), StopTransformJobError>; /// <p>Updates the specified Git repository with the specified values.</p> fn update_code_repository( &self, input: UpdateCodeRepositoryInput, ) -> RusotoFuture<UpdateCodeRepositoryOutput, UpdateCodeRepositoryError>; /// <p><p>Deploys the new <code>EndpointConfig</code> specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous <code>EndpointConfig</code> (there is no availability loss). </p> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Updating</code>. After updating the endpoint, it sets the status to <code>InService</code>. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API. </p> <note> <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note></p> fn update_endpoint( &self, input: UpdateEndpointInput, ) -> RusotoFuture<UpdateEndpointOutput, UpdateEndpointError>; /// <p>Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to <code>Updating</code>. After updating the endpoint, it sets the status to <code>InService</code>. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API. </p> fn update_endpoint_weights_and_capacities( &self, input: UpdateEndpointWeightsAndCapacitiesInput, ) -> RusotoFuture< UpdateEndpointWeightsAndCapacitiesOutput, UpdateEndpointWeightsAndCapacitiesError, >; /// <p>Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.</p> fn update_notebook_instance( &self, input: UpdateNotebookInstanceInput, ) -> RusotoFuture<UpdateNotebookInstanceOutput, UpdateNotebookInstanceError>; /// <p>Updates a notebook instance lifecycle configuration created with the <a>CreateNotebookInstanceLifecycleConfig</a> API.</p> fn update_notebook_instance_lifecycle_config( &self, input: UpdateNotebookInstanceLifecycleConfigInput, ) -> RusotoFuture< UpdateNotebookInstanceLifecycleConfigOutput, UpdateNotebookInstanceLifecycleConfigError, >; /// <p>Updates an existing work team with new member definitions or description.</p> fn update_workteam( &self, input: UpdateWorkteamRequest, ) -> RusotoFuture<UpdateWorkteamResponse, UpdateWorkteamError>; } /// A client for the SageMaker API. #[derive(Clone)] pub struct SageMakerClient { client: Client, region: region::Region, } impl SageMakerClient { /// Creates a client backed by the default tokio event loop. /// /// The client will use the default credentials provider and tls client. pub fn new(region: region::Region) -> SageMakerClient { SageMakerClient { client: Client::shared(), region, } } pub fn new_with<P, D>( request_dispatcher: D, credentials_provider: P, region: region::Region, ) -> SageMakerClient where P: ProvideAwsCredentials + Send + Sync + 'static, P::Future: Send, D: DispatchSignedRequest + Send + Sync + 'static, D::Future: Send, { SageMakerClient { client: Client::new_with(credentials_provider, request_dispatcher), region, } } } impl SageMaker for SageMakerClient { /// <p><p>Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.</p> <p>Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see <a href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS Tagging Strategies</a>.</p> <note> <p>Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the <code>Tags</code> parameter of <a>CreateHyperParameterTuningJob</a> </p> </note></p> fn add_tags(&self, input: AddTagsInput) -> RusotoFuture<AddTagsOutput, AddTagsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.AddTags"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response).deserialize::<AddTagsOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(AddTagsError::from_response(response))), ) } }) } /// <p>Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.</p> fn create_algorithm( &self, input: CreateAlgorithmInput, ) -> RusotoFuture<CreateAlgorithmOutput, CreateAlgorithmError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateAlgorithm"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateAlgorithmOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(CreateAlgorithmError::from_response(response))), ) } }) } /// <p>Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.</p> <p>The repository can be hosted either in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository.</p> fn create_code_repository( &self, input: CreateCodeRepositoryInput, ) -> RusotoFuture<CreateCodeRepositoryOutput, CreateCodeRepositoryError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateCodeRepository"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateCodeRepositoryOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(CreateCodeRepositoryError::from_response(response)) }), ) } }) } /// <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p> <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p>A name for the compilation job</p> </li> <li> <p> Information about the input model artifacts </p> </li> <li> <p>The output location for the compiled model and the device (target) that the model runs on </p> </li> <li> <p> <code>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job</code> </p> </li> </ul> <p>You can also provide a <code>Tag</code> to track the model compilation job's resource use and costs. The response body contains the <code>CompilationJobArn</code> for the compiled job.</p> <p>To stop a model compilation job, use <a>StopCompilationJob</a>. To get information about a particular model compilation job, use <a>DescribeCompilationJob</a>. To get information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p> fn create_compilation_job( &self, input: CreateCompilationJobRequest, ) -> RusotoFuture<CreateCompilationJobResponse, CreateCompilationJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateCompilationJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateCompilationJobResponse, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(CreateCompilationJobError::from_response(response)) }), ) } }) } /// <p>Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API. </p> <note> <p> Use this API only for hosting models using Amazon SageMaker hosting services. </p> <p> You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note> <p>The endpoint name must be unique within an AWS Region in your AWS account. </p> <p>When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. </p> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Creating</code>. After it creates the endpoint, it sets the status to <code>InService</code>. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API.</p> <p>For an example, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/ex1.html">Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker</a>. </p> <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see <a href="http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating AWS STS i an AWS Region</a> in the <i>AWS Identity and Access Management User Guide</i>.</p> fn create_endpoint( &self, input: CreateEndpointInput, ) -> RusotoFuture<CreateEndpointOutput, CreateEndpointError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateEndpoint"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateEndpointOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(CreateEndpointError::from_response(response))), ) } }) } /// <p>Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the <code>CreateModel</code> API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p> <note> <p> Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production. </p> </note> <p>In the request, you define one or more <code>ProductionVariant</code>s, each of which identifies a model. Each <code>ProductionVariant</code> parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. </p> <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. </p> fn create_endpoint_config( &self, input: CreateEndpointConfigInput, ) -> RusotoFuture<CreateEndpointConfigOutput, CreateEndpointConfigError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateEndpointConfig"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateEndpointConfigOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(CreateEndpointConfigError::from_response(response)) }), ) } }) } /// <p>Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.</p> fn create_hyper_parameter_tuning_job( &self, input: CreateHyperParameterTuningJobRequest, ) -> RusotoFuture<CreateHyperParameterTuningJobResponse, CreateHyperParameterTuningJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateHyperParameterTuningJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateHyperParameterTuningJobResponse, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(CreateHyperParameterTuningJobError::from_response(response)) })) } }) } /// <p>Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.</p> <p>You can select your workforce from one of three providers:</p> <ul> <li> <p>A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.</p> </li> <li> <p>One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas. </p> </li> <li> <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.</p> </li> </ul> <p>You can also use <i>automated data labeling</i> to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses <i>active learning</i> to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using Automated Data Labeling</a>.</p> <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a <i>manifest file</i> that describes the location of each object. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p> <p>The output can be used as the manifest file for another labeling job or as training data for your machine learning models.</p> fn create_labeling_job( &self, input: CreateLabelingJobRequest, ) -> RusotoFuture<CreateLabelingJobResponse, CreateLabelingJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateLabelingJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateLabelingJobResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(CreateLabelingJobError::from_response(response))), ) } }) } /// <p>Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions.</p> <p>Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job.</p> <p>To host your model, you create an endpoint configuration with the <code>CreateEndpointConfig</code> API, and then create an endpoint with the <code>CreateEndpoint</code> API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. </p> <p>To run a batch transform using your model, you start a job with the <code>CreateTransformJob</code> API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.</p> <p>In the <code>CreateModel</code> request, you must define a container with the <code>PrimaryContainer</code> parameter.</p> <p>In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.</p> fn create_model( &self, input: CreateModelInput, ) -> RusotoFuture<CreateModelOutput, CreateModelError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateModel"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateModelOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(CreateModelError::from_response(response))), ) } }) } /// <p>Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.</p> <p>To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for <code>InferenceSpecification</code>. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for <code>SourceAlgorithmSpecification</code>.</p> fn create_model_package( &self, input: CreateModelPackageInput, ) -> RusotoFuture<CreateModelPackageOutput, CreateModelPackageError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateModelPackage"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateModelPackageOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(CreateModelPackageError::from_response(response))), ) } }) } /// <p>Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. </p> <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. </p> <p>Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. </p> <p>After receiving the request, Amazon SageMaker does the following:</p> <ol> <li> <p>Creates a network interface in the Amazon SageMaker VPC.</p> </li> <li> <p>(Option) If you specified <code>SubnetId</code>, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.</p> </li> <li> <p>Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified <code>SubnetId</code> of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.</p> </li> </ol> <p>After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN).</p> <p>After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p> fn create_notebook_instance( &self, input: CreateNotebookInstanceInput, ) -> RusotoFuture<CreateNotebookInstanceOutput, CreateNotebookInstanceError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateNotebookInstance"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateNotebookInstanceOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(CreateNotebookInstanceError::from_response(response)) }), ) } }) } /// <p>Creates a lifecycle configuration that you can associate with a notebook instance. A <i>lifecycle configuration</i> is a collection of shell scripts that run when you create or start a notebook instance.</p> <p>Each lifecycle configuration script has a limit of 16384 characters.</p> <p>The value of the <code>$PATH</code> environment variable that is available to both scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p> <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group <code>/aws/sagemaker/NotebookInstances</code> in log stream <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p> <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p> fn create_notebook_instance_lifecycle_config( &self, input: CreateNotebookInstanceLifecycleConfigInput, ) -> RusotoFuture< CreateNotebookInstanceLifecycleConfigOutput, CreateNotebookInstanceLifecycleConfigError, > { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header( "x-amz-target", "SageMaker.CreateNotebookInstanceLifecycleConfig", ); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateNotebookInstanceLifecycleConfigOutput, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(CreateNotebookInstanceLifecycleConfigError::from_response( response, )) })) } }) } /// <p><p>Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose <code>Open</code> next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.</p> <p>You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. To restrict access, attach an IAM policy that denies access to this API unless the call comes from an IP address in the specified list to every AWS Identity and Access Management user, group, or role used to access the notebook instance. Use the <code>NotIpAddress</code> condition operator and the <code>aws:SourceIP</code> condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-ip-filter.html">Limit Access to a Notebook Instance by IP Address</a>.</p> <note> <p>The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.</p> </note></p> fn create_presigned_notebook_instance_url( &self, input: CreatePresignedNotebookInstanceUrlInput, ) -> RusotoFuture< CreatePresignedNotebookInstanceUrlOutput, CreatePresignedNotebookInstanceUrlError, > { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header( "x-amz-target", "SageMaker.CreatePresignedNotebookInstanceUrl", ); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreatePresignedNotebookInstanceUrlOutput, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(CreatePresignedNotebookInstanceUrlError::from_response( response, )) })) } }) } /// <p>Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. </p> <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. </p> <p>In the request body, you provide the following: </p> <ul> <li> <p> <code>AlgorithmSpecification</code> - Identifies the training algorithm to use. </p> </li> <li> <p> <code>HyperParameters</code> - Specify these algorithm-specific parameters to influence the quality of the final model. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> </li> <li> <p> <code>InputDataConfig</code> - Describes the training dataset and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>OutputDataConfig</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training. </p> <p/> </li> <li> <p> <code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. </p> </li> <li> <p> <code>RoleARN</code> - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. </p> </li> <li> <p> <code>StoppingCondition</code> - Sets a duration for training. Use this parameter to cap model training costs. </p> </li> </ul> <p> For more information about Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p> fn create_training_job( &self, input: CreateTrainingJobRequest, ) -> RusotoFuture<CreateTrainingJobResponse, CreateTrainingJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateTrainingJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateTrainingJobResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(CreateTrainingJobError::from_response(response))), ) } }) } /// <p>Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.</p> <p>To perform batch transformations, you create a transform job and use the data that you have readily available.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p> <code>TransformJobName</code> - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.</p> </li> <li> <p> <code>ModelName</code> - Identifies the model to use. <code>ModelName</code> must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see <a>CreateModel</a>.</p> </li> <li> <p> <code>TransformInput</code> - Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>TransformOutput</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> </li> <li> <p> <code>TransformResources</code> - Identifies the ML compute instances for the transform job.</p> </li> </ul> <p> For more information about how batch transformation works Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">How It Works</a>. </p> fn create_transform_job( &self, input: CreateTransformJobRequest, ) -> RusotoFuture<CreateTransformJobResponse, CreateTransformJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateTransformJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateTransformJobResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(CreateTransformJobError::from_response(response))), ) } }) } /// <p>Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.</p> <p>You cannot create more than 25 work teams in an account and region.</p> fn create_workteam( &self, input: CreateWorkteamRequest, ) -> RusotoFuture<CreateWorkteamResponse, CreateWorkteamError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.CreateWorkteam"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<CreateWorkteamResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(CreateWorkteamError::from_response(response))), ) } }) } /// <p>Removes the specified algorithm from your account.</p> fn delete_algorithm( &self, input: DeleteAlgorithmInput, ) -> RusotoFuture<(), DeleteAlgorithmError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteAlgorithm"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DeleteAlgorithmError::from_response(response))), ) } }) } /// <p>Deletes the specified Git repository from your account.</p> fn delete_code_repository( &self, input: DeleteCodeRepositoryInput, ) -> RusotoFuture<(), DeleteCodeRepositoryError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteCodeRepository"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DeleteCodeRepositoryError::from_response(response)) }), ) } }) } /// <p>Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. </p> <p>Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the <a href="http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html">RevokeGrant</a> API call.</p> fn delete_endpoint(&self, input: DeleteEndpointInput) -> RusotoFuture<(), DeleteEndpointError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteEndpoint"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DeleteEndpointError::from_response(response))), ) } }) } /// <p>Deletes an endpoint configuration. The <code>DeleteEndpointConfig</code> API deletes only the specified configuration. It does not delete endpoints created using the configuration. </p> fn delete_endpoint_config( &self, input: DeleteEndpointConfigInput, ) -> RusotoFuture<(), DeleteEndpointConfigError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteEndpointConfig"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DeleteEndpointConfigError::from_response(response)) }), ) } }) } /// <p>Deletes a model. The <code>DeleteModel</code> API deletes only the model entry that was created in Amazon SageMaker when you called the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html">CreateModel</a> API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model. </p> fn delete_model(&self, input: DeleteModelInput) -> RusotoFuture<(), DeleteModelError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteModel"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DeleteModelError::from_response(response))), ) } }) } /// <p>Deletes a model package.</p> <p>A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.</p> fn delete_model_package( &self, input: DeleteModelPackageInput, ) -> RusotoFuture<(), DeleteModelPackageError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteModelPackage"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DeleteModelPackageError::from_response(response))), ) } }) } /// <p><p> Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the <code>StopNotebookInstance</code> API. </p> <important> <p>When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance. </p> </important></p> fn delete_notebook_instance( &self, input: DeleteNotebookInstanceInput, ) -> RusotoFuture<(), DeleteNotebookInstanceError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteNotebookInstance"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DeleteNotebookInstanceError::from_response(response)) }), ) } }) } /// <p>Deletes a notebook instance lifecycle configuration.</p> fn delete_notebook_instance_lifecycle_config( &self, input: DeleteNotebookInstanceLifecycleConfigInput, ) -> RusotoFuture<(), DeleteNotebookInstanceLifecycleConfigError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header( "x-amz-target", "SageMaker.DeleteNotebookInstanceLifecycleConfig", ); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(DeleteNotebookInstanceLifecycleConfigError::from_response( response, )) })) } }) } /// <p><p>Deletes the specified tags from an Amazon SageMaker resource.</p> <p>To list a resource's tags, use the <code>ListTags</code> API. </p> <note> <p>When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.</p> </note></p> fn delete_tags( &self, input: DeleteTagsInput, ) -> RusotoFuture<DeleteTagsOutput, DeleteTagsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteTags"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DeleteTagsOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DeleteTagsError::from_response(response))), ) } }) } /// <p>Deletes an existing work team. This operation can't be undone.</p> fn delete_workteam( &self, input: DeleteWorkteamRequest, ) -> RusotoFuture<DeleteWorkteamResponse, DeleteWorkteamError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DeleteWorkteam"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DeleteWorkteamResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DeleteWorkteamError::from_response(response))), ) } }) } /// <p>Returns a description of the specified algorithm that is in your account.</p> fn describe_algorithm( &self, input: DescribeAlgorithmInput, ) -> RusotoFuture<DescribeAlgorithmOutput, DescribeAlgorithmError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeAlgorithm"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeAlgorithmOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DescribeAlgorithmError::from_response(response))), ) } }) } /// <p>Gets details about the specified Git repository.</p> fn describe_code_repository( &self, input: DescribeCodeRepositoryInput, ) -> RusotoFuture<DescribeCodeRepositoryOutput, DescribeCodeRepositoryError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeCodeRepository"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeCodeRepositoryOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DescribeCodeRepositoryError::from_response(response)) }), ) } }) } /// <p>Returns information about a model compilation job.</p> <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p> fn describe_compilation_job( &self, input: DescribeCompilationJobRequest, ) -> RusotoFuture<DescribeCompilationJobResponse, DescribeCompilationJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeCompilationJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeCompilationJobResponse, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DescribeCompilationJobError::from_response(response)) }), ) } }) } /// <p>Returns the description of an endpoint.</p> fn describe_endpoint( &self, input: DescribeEndpointInput, ) -> RusotoFuture<DescribeEndpointOutput, DescribeEndpointError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeEndpoint"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeEndpointOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DescribeEndpointError::from_response(response))), ) } }) } /// <p>Returns the description of an endpoint configuration created using the <code>CreateEndpointConfig</code> API.</p> fn describe_endpoint_config( &self, input: DescribeEndpointConfigInput, ) -> RusotoFuture<DescribeEndpointConfigOutput, DescribeEndpointConfigError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeEndpointConfig"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeEndpointConfigOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DescribeEndpointConfigError::from_response(response)) }), ) } }) } /// <p>Gets a description of a hyperparameter tuning job.</p> fn describe_hyper_parameter_tuning_job( &self, input: DescribeHyperParameterTuningJobRequest, ) -> RusotoFuture<DescribeHyperParameterTuningJobResponse, DescribeHyperParameterTuningJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeHyperParameterTuningJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeHyperParameterTuningJobResponse, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(DescribeHyperParameterTuningJobError::from_response( response, )) })) } }) } /// <p>Gets information about a labeling job.</p> fn describe_labeling_job( &self, input: DescribeLabelingJobRequest, ) -> RusotoFuture<DescribeLabelingJobResponse, DescribeLabelingJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeLabelingJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeLabelingJobResponse, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DescribeLabelingJobError::from_response(response)) }), ) } }) } /// <p>Describes a model that you created using the <code>CreateModel</code> API.</p> fn describe_model( &self, input: DescribeModelInput, ) -> RusotoFuture<DescribeModelOutput, DescribeModelError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeModel"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeModelOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DescribeModelError::from_response(response))), ) } }) } /// <p>Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace.</p> <p>To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.</p> fn describe_model_package( &self, input: DescribeModelPackageInput, ) -> RusotoFuture<DescribeModelPackageOutput, DescribeModelPackageError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeModelPackage"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeModelPackageOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DescribeModelPackageError::from_response(response)) }), ) } }) } /// <p>Returns information about a notebook instance.</p> fn describe_notebook_instance( &self, input: DescribeNotebookInstanceInput, ) -> RusotoFuture<DescribeNotebookInstanceOutput, DescribeNotebookInstanceError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeNotebookInstance"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeNotebookInstanceOutput, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(DescribeNotebookInstanceError::from_response(response)) })) } }) } /// <p>Returns a description of a notebook instance lifecycle configuration.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p> fn describe_notebook_instance_lifecycle_config( &self, input: DescribeNotebookInstanceLifecycleConfigInput, ) -> RusotoFuture< DescribeNotebookInstanceLifecycleConfigOutput, DescribeNotebookInstanceLifecycleConfigError, > { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header( "x-amz-target", "SageMaker.DescribeNotebookInstanceLifecycleConfig", ); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeNotebookInstanceLifecycleConfigOutput, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(DescribeNotebookInstanceLifecycleConfigError::from_response( response, )) })) } }) } /// <p>Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.</p> fn describe_subscribed_workteam( &self, input: DescribeSubscribedWorkteamRequest, ) -> RusotoFuture<DescribeSubscribedWorkteamResponse, DescribeSubscribedWorkteamError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeSubscribedWorkteam"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeSubscribedWorkteamResponse, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(DescribeSubscribedWorkteamError::from_response(response)) })) } }) } /// <p>Returns information about a training job.</p> fn describe_training_job( &self, input: DescribeTrainingJobRequest, ) -> RusotoFuture<DescribeTrainingJobResponse, DescribeTrainingJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeTrainingJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeTrainingJobResponse, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DescribeTrainingJobError::from_response(response)) }), ) } }) } /// <p>Returns information about a transform job.</p> fn describe_transform_job( &self, input: DescribeTransformJobRequest, ) -> RusotoFuture<DescribeTransformJobResponse, DescribeTransformJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeTransformJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeTransformJobResponse, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(DescribeTransformJobError::from_response(response)) }), ) } }) } /// <p>Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).</p> fn describe_workteam( &self, input: DescribeWorkteamRequest, ) -> RusotoFuture<DescribeWorkteamResponse, DescribeWorkteamError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.DescribeWorkteam"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<DescribeWorkteamResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(DescribeWorkteamError::from_response(response))), ) } }) } /// <p>An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in <code>Search</code> queries. Provides suggestions for <code>HyperParameters</code>, <code>Tags</code>, and <code>Metrics</code>.</p> fn get_search_suggestions( &self, input: GetSearchSuggestionsRequest, ) -> RusotoFuture<GetSearchSuggestionsResponse, GetSearchSuggestionsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.GetSearchSuggestions"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<GetSearchSuggestionsResponse, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(GetSearchSuggestionsError::from_response(response)) }), ) } }) } /// <p>Lists the machine learning algorithms that have been created.</p> fn list_algorithms( &self, input: ListAlgorithmsInput, ) -> RusotoFuture<ListAlgorithmsOutput, ListAlgorithmsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListAlgorithms"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListAlgorithmsOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListAlgorithmsError::from_response(response))), ) } }) } /// <p>Gets a list of the Git repositories in your account.</p> fn list_code_repositories( &self, input: ListCodeRepositoriesInput, ) -> RusotoFuture<ListCodeRepositoriesOutput, ListCodeRepositoriesError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListCodeRepositories"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListCodeRepositoriesOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(ListCodeRepositoriesError::from_response(response)) }), ) } }) } /// <p>Lists model compilation jobs that satisfy various filters.</p> <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get information about a particular model compilation job you have created, use <a>DescribeCompilationJob</a>.</p> fn list_compilation_jobs( &self, input: ListCompilationJobsRequest, ) -> RusotoFuture<ListCompilationJobsResponse, ListCompilationJobsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListCompilationJobs"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListCompilationJobsResponse, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(ListCompilationJobsError::from_response(response)) }), ) } }) } /// <p>Lists endpoint configurations.</p> fn list_endpoint_configs( &self, input: ListEndpointConfigsInput, ) -> RusotoFuture<ListEndpointConfigsOutput, ListEndpointConfigsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListEndpointConfigs"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListEndpointConfigsOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(ListEndpointConfigsError::from_response(response)) }), ) } }) } /// <p>Lists endpoints.</p> fn list_endpoints( &self, input: ListEndpointsInput, ) -> RusotoFuture<ListEndpointsOutput, ListEndpointsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListEndpoints"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListEndpointsOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListEndpointsError::from_response(response))), ) } }) } /// <p>Gets a list of <a>HyperParameterTuningJobSummary</a> objects that describe the hyperparameter tuning jobs launched in your account.</p> fn list_hyper_parameter_tuning_jobs( &self, input: ListHyperParameterTuningJobsRequest, ) -> RusotoFuture<ListHyperParameterTuningJobsResponse, ListHyperParameterTuningJobsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListHyperParameterTuningJobs"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListHyperParameterTuningJobsResponse, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(ListHyperParameterTuningJobsError::from_response(response)) })) } }) } /// <p>Gets a list of labeling jobs.</p> fn list_labeling_jobs( &self, input: ListLabelingJobsRequest, ) -> RusotoFuture<ListLabelingJobsResponse, ListLabelingJobsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListLabelingJobs"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListLabelingJobsResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListLabelingJobsError::from_response(response))), ) } }) } /// <p>Gets a list of labeling jobs assigned to a specified work team.</p> fn list_labeling_jobs_for_workteam( &self, input: ListLabelingJobsForWorkteamRequest, ) -> RusotoFuture<ListLabelingJobsForWorkteamResponse, ListLabelingJobsForWorkteamError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListLabelingJobsForWorkteam"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListLabelingJobsForWorkteamResponse, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(ListLabelingJobsForWorkteamError::from_response(response)) })) } }) } /// <p>Lists the model packages that have been created.</p> fn list_model_packages( &self, input: ListModelPackagesInput, ) -> RusotoFuture<ListModelPackagesOutput, ListModelPackagesError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListModelPackages"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListModelPackagesOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListModelPackagesError::from_response(response))), ) } }) } /// <p>Lists models created with the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html">CreateModel</a> API.</p> fn list_models( &self, input: ListModelsInput, ) -> RusotoFuture<ListModelsOutput, ListModelsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListModels"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListModelsOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListModelsError::from_response(response))), ) } }) } /// <p>Lists notebook instance lifestyle configurations created with the <a>CreateNotebookInstanceLifecycleConfig</a> API.</p> fn list_notebook_instance_lifecycle_configs( &self, input: ListNotebookInstanceLifecycleConfigsInput, ) -> RusotoFuture< ListNotebookInstanceLifecycleConfigsOutput, ListNotebookInstanceLifecycleConfigsError, > { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header( "x-amz-target", "SageMaker.ListNotebookInstanceLifecycleConfigs", ); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListNotebookInstanceLifecycleConfigsOutput, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(ListNotebookInstanceLifecycleConfigsError::from_response( response, )) })) } }) } /// <p>Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region. </p> fn list_notebook_instances( &self, input: ListNotebookInstancesInput, ) -> RusotoFuture<ListNotebookInstancesOutput, ListNotebookInstancesError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListNotebookInstances"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListNotebookInstancesOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(ListNotebookInstancesError::from_response(response)) }), ) } }) } /// <p>Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the <code>NameContains</code> parameter.</p> fn list_subscribed_workteams( &self, input: ListSubscribedWorkteamsRequest, ) -> RusotoFuture<ListSubscribedWorkteamsResponse, ListSubscribedWorkteamsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListSubscribedWorkteams"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListSubscribedWorkteamsResponse, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(ListSubscribedWorkteamsError::from_response(response)) })) } }) } /// <p>Returns the tags for the specified Amazon SageMaker resource.</p> fn list_tags(&self, input: ListTagsInput) -> RusotoFuture<ListTagsOutput, ListTagsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListTags"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response).deserialize::<ListTagsOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListTagsError::from_response(response))), ) } }) } /// <p>Lists training jobs.</p> fn list_training_jobs( &self, input: ListTrainingJobsRequest, ) -> RusotoFuture<ListTrainingJobsResponse, ListTrainingJobsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListTrainingJobs"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListTrainingJobsResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListTrainingJobsError::from_response(response))), ) } }) } /// <p>Gets a list of <a>TrainingJobSummary</a> objects that describe the training jobs that a hyperparameter tuning job launched.</p> fn list_training_jobs_for_hyper_parameter_tuning_job( &self, input: ListTrainingJobsForHyperParameterTuningJobRequest, ) -> RusotoFuture< ListTrainingJobsForHyperParameterTuningJobResponse, ListTrainingJobsForHyperParameterTuningJobError, > { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header( "x-amz-target", "SageMaker.ListTrainingJobsForHyperParameterTuningJob", ); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListTrainingJobsForHyperParameterTuningJobResponse, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(ListTrainingJobsForHyperParameterTuningJobError::from_response(response)) })) } }) } /// <p>Lists transform jobs.</p> fn list_transform_jobs( &self, input: ListTransformJobsRequest, ) -> RusotoFuture<ListTransformJobsResponse, ListTransformJobsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListTransformJobs"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListTransformJobsResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListTransformJobsError::from_response(response))), ) } }) } /// <p>Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the <code>NameContains</code> parameter.</p> fn list_workteams( &self, input: ListWorkteamsRequest, ) -> RusotoFuture<ListWorkteamsResponse, ListWorkteamsError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.ListWorkteams"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<ListWorkteamsResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(ListWorkteamsError::from_response(response))), ) } }) } /// <p>Renders the UI template so that you can preview the worker's experience. </p> fn render_ui_template( &self, input: RenderUiTemplateRequest, ) -> RusotoFuture<RenderUiTemplateResponse, RenderUiTemplateError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.RenderUiTemplate"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<RenderUiTemplateResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(RenderUiTemplateError::from_response(response))), ) } }) } /// <p>Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of <code>SearchResult</code> objects in the response. You can sort the search results by any resource property in a ascending or descending order.</p> <p>You can query against the following value types: numerical, text, Booleans, and timestamps.</p> fn search(&self, input: SearchRequest) -> RusotoFuture<SearchResponse, SearchError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.Search"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response).deserialize::<SearchResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(SearchError::from_response(response))), ) } }) } /// <p>Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to <code>InService</code>. A notebook instance's status must be <code>InService</code> before you can connect to your Jupyter notebook. </p> fn start_notebook_instance( &self, input: StartNotebookInstanceInput, ) -> RusotoFuture<(), StartNotebookInstanceError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.StartNotebookInstance"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(StartNotebookInstanceError::from_response(response)) }), ) } }) } /// <p>Stops a model compilation job.</p> <p> To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal.</p> <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the <a>CompilationJobSummary$CompilationJobStatus</a> of the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the <a>CompilationJobSummary$CompilationJobStatus</a> to <code>Stopped</code>. </p> fn stop_compilation_job( &self, input: StopCompilationJobRequest, ) -> RusotoFuture<(), StopCompilationJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.StopCompilationJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(StopCompilationJobError::from_response(response))), ) } }) } /// <p>Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.</p> <p>All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the <code>Stopped</code> state, it releases all reserved resources for the tuning job.</p> fn stop_hyper_parameter_tuning_job( &self, input: StopHyperParameterTuningJobRequest, ) -> RusotoFuture<(), StopHyperParameterTuningJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.StopHyperParameterTuningJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(StopHyperParameterTuningJobError::from_response(response)) })) } }) } /// <p>Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.</p> fn stop_labeling_job( &self, input: StopLabelingJobRequest, ) -> RusotoFuture<(), StopLabelingJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.StopLabelingJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(StopLabelingJobError::from_response(response))), ) } }) } /// <p>Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call <code>StopNotebookInstance</code>.</p> <p>To access data on the ML storage volume for a notebook instance that has been terminated, call the <code>StartNotebookInstance</code> API. <code>StartNotebookInstance</code> launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work. </p> fn stop_notebook_instance( &self, input: StopNotebookInstanceInput, ) -> RusotoFuture<(), StopNotebookInstanceError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.StopNotebookInstance"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(StopNotebookInstanceError::from_response(response)) }), ) } }) } /// <p>Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. </p> <p>When it receives a <code>StopTrainingJob</code> request, Amazon SageMaker changes the status of the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the status to <code>Stopped</code>.</p> fn stop_training_job( &self, input: StopTrainingJobRequest, ) -> RusotoFuture<(), StopTrainingJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.StopTrainingJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(StopTrainingJobError::from_response(response))), ) } }) } /// <p>Stops a transform job.</p> <p>When Amazon SageMaker receives a <code>StopTransformJob</code> request, the status of the job changes to <code>Stopping</code>. After Amazon SageMaker stops the job, the status is set to <code>Stopped</code>. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.</p> fn stop_transform_job( &self, input: StopTransformJobRequest, ) -> RusotoFuture<(), StopTransformJobError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.StopTransformJob"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(future::ok(::std::mem::drop(response))) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(StopTransformJobError::from_response(response))), ) } }) } /// <p>Updates the specified Git repository with the specified values.</p> fn update_code_repository( &self, input: UpdateCodeRepositoryInput, ) -> RusotoFuture<UpdateCodeRepositoryOutput, UpdateCodeRepositoryError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.UpdateCodeRepository"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<UpdateCodeRepositoryOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(UpdateCodeRepositoryError::from_response(response)) }), ) } }) } /// <p><p>Deploys the new <code>EndpointConfig</code> specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous <code>EndpointConfig</code> (there is no availability loss). </p> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Updating</code>. After updating the endpoint, it sets the status to <code>InService</code>. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API. </p> <note> <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note></p> fn update_endpoint( &self, input: UpdateEndpointInput, ) -> RusotoFuture<UpdateEndpointOutput, UpdateEndpointError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.UpdateEndpoint"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<UpdateEndpointOutput, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(UpdateEndpointError::from_response(response))), ) } }) } /// <p>Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to <code>Updating</code>. After updating the endpoint, it sets the status to <code>InService</code>. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API. </p> fn update_endpoint_weights_and_capacities( &self, input: UpdateEndpointWeightsAndCapacitiesInput, ) -> RusotoFuture< UpdateEndpointWeightsAndCapacitiesOutput, UpdateEndpointWeightsAndCapacitiesError, > { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header( "x-amz-target", "SageMaker.UpdateEndpointWeightsAndCapacities", ); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<UpdateEndpointWeightsAndCapacitiesOutput, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(UpdateEndpointWeightsAndCapacitiesError::from_response( response, )) })) } }) } /// <p>Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.</p> fn update_notebook_instance( &self, input: UpdateNotebookInstanceInput, ) -> RusotoFuture<UpdateNotebookInstanceOutput, UpdateNotebookInstanceError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.UpdateNotebookInstance"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<UpdateNotebookInstanceOutput, _>() })) } else { Box::new( response.buffer().from_err().and_then(|response| { Err(UpdateNotebookInstanceError::from_response(response)) }), ) } }) } /// <p>Updates a notebook instance lifecycle configuration created with the <a>CreateNotebookInstanceLifecycleConfig</a> API.</p> fn update_notebook_instance_lifecycle_config( &self, input: UpdateNotebookInstanceLifecycleConfigInput, ) -> RusotoFuture< UpdateNotebookInstanceLifecycleConfigOutput, UpdateNotebookInstanceLifecycleConfigError, > { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header( "x-amz-target", "SageMaker.UpdateNotebookInstanceLifecycleConfig", ); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<UpdateNotebookInstanceLifecycleConfigOutput, _>() })) } else { Box::new(response.buffer().from_err().and_then(|response| { Err(UpdateNotebookInstanceLifecycleConfigError::from_response( response, )) })) } }) } /// <p>Updates an existing work team with new member definitions or description.</p> fn update_workteam( &self, input: UpdateWorkteamRequest, ) -> RusotoFuture<UpdateWorkteamResponse, UpdateWorkteamError> { let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/"); request.set_endpoint_prefix("api.sagemaker".to_string()); request.set_content_type("application/x-amz-json-1.1".to_owned()); request.add_header("x-amz-target", "SageMaker.UpdateWorkteam"); let encoded = serde_json::to_string(&input).unwrap(); request.set_payload(Some(encoded)); self.client.sign_and_dispatch(request, |response| { if response.status.is_success() { Box::new(response.buffer().from_err().and_then(|response| { proto::json::ResponsePayload::new(&response) .deserialize::<UpdateWorkteamResponse, _>() })) } else { Box::new( response .buffer() .from_err() .and_then(|response| Err(UpdateWorkteamError::from_response(response))), ) } }) } }