1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
// =================================================================
//
//                           * WARNING *
//
//                    This file is generated!
//
//  Changes made to this file will be overwritten. If changes are
//  required to the generated code, the service_crategen project
//  must be updated to generate the changes.
//
// =================================================================

use std::error::Error;
use std::fmt;

#[allow(warnings)]
use futures::future;
use futures::Future;
use rusoto_core::credential::ProvideAwsCredentials;
use rusoto_core::region;
use rusoto_core::request::{BufferedHttpResponse, DispatchSignedRequest};
use rusoto_core::{Client, RusotoError, RusotoFuture};

use rusoto_core::proto;
use rusoto_core::signature::SignedRequest;
use serde_json;
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct AddTagsInput {
    /// <p>The Amazon Resource Name (ARN) of the resource that you want to tag.</p>
    #[serde(rename = "ResourceArn")]
    pub resource_arn: String,
    /// <p>An array of <code>Tag</code> objects. Each tag is a key-value pair. Only the <code>key</code> parameter is required. If you don't specify a value, Amazon SageMaker sets the value to an empty string. </p>
    #[serde(rename = "Tags")]
    pub tags: Vec<Tag>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct AddTagsOutput {
    /// <p>A list of tags associated with the Amazon SageMaker resource.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
}

/// <p>Specifies the training algorithm to use in a <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html">CreateTrainingJob</a> request.</p> <p>For more information about algorithms provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about using your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct AlgorithmSpecification {
    /// <p>The name of the algorithm resource to use for the training job. This must be an algorithm resource that you created or subscribe to on AWS Marketplace. If you specify a value for this parameter, you can't specify a value for <code>TrainingImage</code>.</p>
    #[serde(rename = "AlgorithmName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub algorithm_name: Option<String>,
    /// <p>A list of metric definition objects. Each object specifies the metric name and regular expressions used to parse algorithm logs. Amazon SageMaker publishes each metric to Amazon CloudWatch.</p>
    #[serde(rename = "MetricDefinitions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub metric_definitions: Option<Vec<MetricDefinition>>,
    /// <p>The registry path of the Docker image that contains the training algorithm. For information about docker registry paths for built-in algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Algorithms Provided by Amazon SageMaker: Common Parameters</a>. Amazon SageMaker supports both <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code> image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
    #[serde(rename = "TrainingImage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_image: Option<String>,
    /// <p>The input mode that the algorithm supports. For the input modes that Amazon SageMaker algorithms support, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. If an algorithm supports the <code>File</code> input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the <code>Pipe</code> input mode, Amazon SageMaker streams data directly from S3 to the container. </p> <p> In File mode, make sure you provision ML storage volume with sufficient capacity to accommodate the data download from S3. In addition to the training data, the ML storage volume also stores the output model. The algorithm container use ML storage volume to also store intermediate information, if any. </p> <p> For distributed algorithms using File mode, training data is distributed uniformly, and your training duration is predictable if the input data objects size is approximately same. Amazon SageMaker does not split the files any further for model training. If the object sizes are skewed, training won't be optimal as the data distribution is also skewed where one host in a training cluster is overloaded, thus becoming bottleneck in training. </p>
    #[serde(rename = "TrainingInputMode")]
    pub training_input_mode: String,
}

/// <p>Specifies the validation and image scan statuses of the algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct AlgorithmStatusDetails {
    /// <p>The status of the scan of the algorithm's Docker image container.</p>
    #[serde(rename = "ImageScanStatuses")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub image_scan_statuses: Option<Vec<AlgorithmStatusItem>>,
    /// <p>The status of algorithm validation.</p>
    #[serde(rename = "ValidationStatuses")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub validation_statuses: Option<Vec<AlgorithmStatusItem>>,
}

/// <p>Represents the overall status of an algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct AlgorithmStatusItem {
    /// <p>if the overall status is <code>Failed</code>, the reason for the failure.</p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>The name of the algorithm for which the overall status is being reported.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p>The current status.</p>
    #[serde(rename = "Status")]
    pub status: String,
}

/// <p>Provides summary information about an algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct AlgorithmSummary {
    /// <p>The Amazon Resource Name (ARN) of the algorithm.</p>
    #[serde(rename = "AlgorithmArn")]
    pub algorithm_arn: String,
    /// <p>A brief description of the algorithm.</p>
    #[serde(rename = "AlgorithmDescription")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub algorithm_description: Option<String>,
    /// <p>The name of the algorithm that is described by the summary.</p>
    #[serde(rename = "AlgorithmName")]
    pub algorithm_name: String,
    /// <p>The overall status of the algorithm.</p>
    #[serde(rename = "AlgorithmStatus")]
    pub algorithm_status: String,
    /// <p>A timestamp that shows when the algorithm was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
}

/// <p>Defines a training job and a batch transform job that Amazon SageMaker runs to validate your algorithm.</p> <p>The data provided in the validation profile is made available to your buyers on AWS Marketplace.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct AlgorithmValidationProfile {
    /// <p>The name of the profile for the algorithm. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p>
    #[serde(rename = "ProfileName")]
    pub profile_name: String,
    /// <p>The <code>TrainingJobDefinition</code> object that describes the training job that Amazon SageMaker runs to validate your algorithm.</p>
    #[serde(rename = "TrainingJobDefinition")]
    pub training_job_definition: TrainingJobDefinition,
    /// <p>The <code>TransformJobDefinition</code> object that describes the transform job that Amazon SageMaker runs to validate your algorithm.</p>
    #[serde(rename = "TransformJobDefinition")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub transform_job_definition: Option<TransformJobDefinition>,
}

/// <p>Specifies configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct AlgorithmValidationSpecification {
    /// <p>An array of <code>AlgorithmValidationProfile</code> objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm.</p>
    #[serde(rename = "ValidationProfiles")]
    pub validation_profiles: Vec<AlgorithmValidationProfile>,
    /// <p>The IAM roles that Amazon SageMaker uses to run the training jobs.</p>
    #[serde(rename = "ValidationRole")]
    pub validation_role: String,
}

/// <p>Configures how labels are consolidated across human workers.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct AnnotationConsolidationConfig {
    /// <p>The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation.</p> <p>For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:</p> <ul> <li> <p> <i>Bounding box</i> - Finds the most similar boxes from different workers based on the Jaccard index of the boxes.</p> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox</code> </p> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox</code> </p> </li> <li> <p> <i>Image classification</i> - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers.</p> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass</code> </p> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass</code> </p> </li> <li> <p> <i>Semantic segmentation</i> - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label.</p> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation</code> </p> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation</code> </p> </li> <li> <p> <i>Text classification</i> - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers.</p> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass</code> </p> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass</code> </p> </li> </ul> <p>For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html">Annotation Consolidation</a>.</p>
    #[serde(rename = "AnnotationConsolidationLambdaArn")]
    pub annotation_consolidation_lambda_arn: String,
}

/// <p>A list of categorical hyperparameters to tune.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct CategoricalParameterRange {
    /// <p>The name of the categorical hyperparameter to tune.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p>A list of the categories for the hyperparameter.</p>
    #[serde(rename = "Values")]
    pub values: Vec<String>,
}

/// <p>Defines the possible values for a categorical hyperparameter.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct CategoricalParameterRangeSpecification {
    /// <p>The allowed categories for the hyperparameter.</p>
    #[serde(rename = "Values")]
    pub values: Vec<String>,
}

/// <p>A channel is a named input source that training algorithms can consume. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Channel {
    /// <p>The name of the channel. </p>
    #[serde(rename = "ChannelName")]
    pub channel_name: String,
    /// <p>If training data is compressed, the compression type. The default value is <code>None</code>. <code>CompressionType</code> is used only in Pipe input mode. In File mode, leave this field unset or set it to None.</p>
    #[serde(rename = "CompressionType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compression_type: Option<String>,
    /// <p>The MIME type of the data.</p>
    #[serde(rename = "ContentType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub content_type: Option<String>,
    /// <p>The location of the channel data.</p>
    #[serde(rename = "DataSource")]
    pub data_source: DataSource,
    /// <p>(Optional) The input mode to use for the data channel in a training job. If you don't set a value for <code>InputMode</code>, Amazon SageMaker uses the value set for <code>TrainingInputMode</code>. Use this parameter to override the <code>TrainingInputMode</code> setting in a <a>AlgorithmSpecification</a> request when you have a channel that needs a different input mode from the training job's general setting. To download the data from Amazon Simple Storage Service (Amazon S3) to the provisioned ML storage volume, and mount the directory to a Docker volume, use <code>File</code> input mode. To stream data directly from Amazon S3 to the container, choose <code>Pipe</code> input mode.</p> <p>To use a model for incremental training, choose <code>File</code> input model.</p>
    #[serde(rename = "InputMode")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_mode: Option<String>,
    /// <p><p/> <p>Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don&#39;t need to set this attribute. For more information, see <a href="https://mxnet.incubator.apache.org/architecture/note_data_loading.html#data-format">Create a Dataset Using RecordIO</a>. </p> <p>In File mode, leave this field unset or set it to None.</p></p>
    #[serde(rename = "RecordWrapperType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub record_wrapper_type: Option<String>,
    /// <p>A configuration for a shuffle option for input data in a channel. If you use <code>S3Prefix</code> for <code>S3DataType</code>, this shuffles the results of the S3 key prefix matches. If you use <code>ManifestFile</code>, the order of the S3 object references in the <code>ManifestFile</code> is shuffled. If you use <code>AugmentedManifestFile</code>, the order of the JSON lines in the <code>AugmentedManifestFile</code> is shuffled. The shuffling order is determined using the <code>Seed</code> value.</p> <p>For Pipe input mode, shuffling is done at the start of every epoch. With large datasets this ensures that the order of the training data is different for each epoch, it helps reduce bias and possible overfitting. In a multi-node training job when ShuffleConfig is combined with <code>S3DataDistributionType</code> of <code>ShardedByS3Key</code>, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.</p>
    #[serde(rename = "ShuffleConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub shuffle_config: Option<ShuffleConfig>,
}

/// <p>Defines a named input source, called a channel, to be used by an algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ChannelSpecification {
    /// <p>A brief description of the channel.</p>
    #[serde(rename = "Description")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub description: Option<String>,
    /// <p>Indicates whether the channel is required by the algorithm.</p>
    #[serde(rename = "IsRequired")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub is_required: Option<bool>,
    /// <p>The name of the channel.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p>The allowed compression types, if data compression is used.</p>
    #[serde(rename = "SupportedCompressionTypes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub supported_compression_types: Option<Vec<String>>,
    /// <p>The supported MIME types for the data.</p>
    #[serde(rename = "SupportedContentTypes")]
    pub supported_content_types: Vec<String>,
    /// <p>The allowed input mode, either FILE or PIPE.</p> <p>In FILE mode, Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used input mode.</p> <p>In PIPE mode, Amazon SageMaker streams input data from the source directly to your algorithm without using the EBS volume.</p>
    #[serde(rename = "SupportedInputModes")]
    pub supported_input_modes: Vec<String>,
}

/// <p>Specifies summary information about a Git repository.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CodeRepositorySummary {
    /// <p>The Amazon Resource Name (ARN) of the Git repository.</p>
    #[serde(rename = "CodeRepositoryArn")]
    pub code_repository_arn: String,
    /// <p>The name of the Git repository.</p>
    #[serde(rename = "CodeRepositoryName")]
    pub code_repository_name: String,
    /// <p>The date and time that the Git repository was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>Configuration details for the Git repository, including the URL where it is located and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.</p>
    #[serde(rename = "GitConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub git_config: Option<GitConfig>,
    /// <p>The date and time that the Git repository was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    pub last_modified_time: f64,
}

/// <p>Identifies a Amazon Cognito user group. A user group can be used in on or more work teams.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct CognitoMemberDefinition {
    /// <p>An identifier for an application client. You must create the app client ID using Amazon Cognito.</p>
    #[serde(rename = "ClientId")]
    pub client_id: String,
    /// <p>An identifier for a user group.</p>
    #[serde(rename = "UserGroup")]
    pub user_group: String,
    /// <p>An identifier for a user pool. The user pool must be in the same region as the service that you are calling.</p>
    #[serde(rename = "UserPool")]
    pub user_pool: String,
}

/// <p>A summary of a model compilation job.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CompilationJobSummary {
    /// <p>The time when the model compilation job completed.</p>
    #[serde(rename = "CompilationEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compilation_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the model compilation job.</p>
    #[serde(rename = "CompilationJobArn")]
    pub compilation_job_arn: String,
    /// <p>The name of the model compilation job that you want a summary for.</p>
    #[serde(rename = "CompilationJobName")]
    pub compilation_job_name: String,
    /// <p>The status of the model compilation job.</p>
    #[serde(rename = "CompilationJobStatus")]
    pub compilation_job_status: String,
    /// <p>The time when the model compilation job started.</p>
    #[serde(rename = "CompilationStartTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compilation_start_time: Option<f64>,
    /// <p>The type of device that the model will run on after compilation has completed.</p>
    #[serde(rename = "CompilationTargetDevice")]
    pub compilation_target_device: String,
    /// <p>The time when the model compilation job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The time when the model compilation job was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
}

/// <p>Describes the container, as part of model definition.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ContainerDefinition {
    /// <p>This parameter is ignored for models that contain only a <code>PrimaryContainer</code>.</p> <p>When a <code>ContainerDefinition</code> is part of an inference pipeline, the value of ths parameter uniquely identifies the container for the purposes of logging and metrics. For information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-logs-metrics.html">Use Logs and Metrics to Monitor an Inference Pipeline</a>. If you don't specify a value for this parameter for a <code>ContainerDefinition</code> that is part of an inference pipeline, a unique name is automatically assigned based on the position of the <code>ContainerDefinition</code> in the pipeline. If you specify a value for the <code>ContainerHostName</code> for any <code>ContainerDefinition</code> that is part of an inference pipeline, you must specify a value for the <code>ContainerHostName</code> parameter of every <code>ContainerDefinition</code> in that pipeline.</p>
    #[serde(rename = "ContainerHostname")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub container_hostname: Option<String>,
    /// <p>The environment variables to set in the Docker container. Each key and value in the <code>Environment</code> string to string map can have length of up to 1024. We support up to 16 entries in the map. </p>
    #[serde(rename = "Environment")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub environment: Option<::std::collections::HashMap<String, String>>,
    /// <p>The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code> image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a> </p>
    #[serde(rename = "Image")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub image: Option<String>,
    /// <p><p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but not if you use your own algorithms. For more information on built-in algorithms, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Common Parameters</a>. </p> <p>If you provide a value for this parameter, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provide. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see <a href="http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating AWS STS in an AWS Region</a> in the <i>AWS Identity and Access Management User Guide</i>.</p> <important> <p>If you use a built-in algorithm to create a model, Amazon SageMaker requires that you provide a S3 path to the model artifacts in <code>ModelDataUrl</code>.</p> </important></p>
    #[serde(rename = "ModelDataUrl")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model_data_url: Option<String>,
    /// <p>The name of the model package to use to create the model.</p>
    #[serde(rename = "ModelPackageName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model_package_name: Option<String>,
}

/// <p>A list of continuous hyperparameters to tune.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ContinuousParameterRange {
    /// <p>The maximum value for the hyperparameter. The tuning job uses floating-point values between <code>MinValue</code> value and this value for tuning.</p>
    #[serde(rename = "MaxValue")]
    pub max_value: String,
    /// <p>The minimum value for the hyperparameter. The tuning job uses floating-point values between this value and <code>MaxValue</code>for tuning.</p>
    #[serde(rename = "MinValue")]
    pub min_value: String,
    /// <p>The name of the continuous hyperparameter to tune.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p><p>The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see <a href="http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.</p> </dd> <dt>Logarithmic</dt> <dd> <p>Hyperparemeter tuning searches the values in the hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling works only for ranges that have only values greater than 0.</p> </dd> <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparemeter tuning searches the values in the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse logarithmic scaling works only for ranges that are entirely within the range 0&lt;=x&lt;1.0.</p> </dd> </dl></p>
    #[serde(rename = "ScalingType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub scaling_type: Option<String>,
}

/// <p>Defines the possible values for a continuous hyperparameter.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ContinuousParameterRangeSpecification {
    /// <p>The maximum floating-point value allowed.</p>
    #[serde(rename = "MaxValue")]
    pub max_value: String,
    /// <p>The minimum floating-point value allowed.</p>
    #[serde(rename = "MinValue")]
    pub min_value: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateAlgorithmInput {
    /// <p>A description of the algorithm.</p>
    #[serde(rename = "AlgorithmDescription")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub algorithm_description: Option<String>,
    /// <p>The name of the algorithm.</p>
    #[serde(rename = "AlgorithmName")]
    pub algorithm_name: String,
    /// <p>Whether to certify the algorithm so that it can be listed in AWS Marketplace.</p>
    #[serde(rename = "CertifyForMarketplace")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub certify_for_marketplace: Option<bool>,
    /// <p><p>Specifies details about inference jobs that the algorithm runs, including the following:</p> <ul> <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li> <li> <p>The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.</p> </li> <li> <p>The input and output content formats that the algorithm supports for inference.</p> </li> </ul></p>
    #[serde(rename = "InferenceSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub inference_specification: Option<InferenceSpecification>,
    /// <p><p>Specifies details about training jobs run by this algorithm, including the following:</p> <ul> <li> <p>The Amazon ECR path of the container and the version digest of the algorithm.</p> </li> <li> <p>The hyperparameters that the algorithm supports.</p> </li> <li> <p>The instance types that the algorithm supports for training.</p> </li> <li> <p>Whether the algorithm supports distributed training.</p> </li> <li> <p>The metrics that the algorithm emits to Amazon CloudWatch.</p> </li> <li> <p>Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.</p> </li> <li> <p>The input channels that the algorithm supports for training data. For example, an algorithm might support <code>train</code>, <code>validation</code>, and <code>test</code> channels.</p> </li> </ul></p>
    #[serde(rename = "TrainingSpecification")]
    pub training_specification: TrainingSpecification,
    /// <p>Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm's training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm's inference code.</p>
    #[serde(rename = "ValidationSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub validation_specification: Option<AlgorithmValidationSpecification>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateAlgorithmOutput {
    /// <p>The Amazon Resource Name (ARN) of the new algorithm.</p>
    #[serde(rename = "AlgorithmArn")]
    pub algorithm_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateCodeRepositoryInput {
    /// <p>The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p>
    #[serde(rename = "CodeRepositoryName")]
    pub code_repository_name: String,
    /// <p>Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.</p>
    #[serde(rename = "GitConfig")]
    pub git_config: GitConfig,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateCodeRepositoryOutput {
    /// <p>The Amazon Resource Name (ARN) of the new repository.</p>
    #[serde(rename = "CodeRepositoryArn")]
    pub code_repository_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateCompilationJobRequest {
    /// <p>A name for the model compilation job. The name must be unique within the AWS Region and within your AWS account. </p>
    #[serde(rename = "CompilationJobName")]
    pub compilation_job_name: String,
    /// <p>Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.</p>
    #[serde(rename = "InputConfig")]
    pub input_config: InputConfig,
    /// <p>Provides information about the output location for the compiled model and the target device the model runs on.</p>
    #[serde(rename = "OutputConfig")]
    pub output_config: OutputConfig,
    /// <p>The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. </p> <p>During model compilation, Amazon SageMaker needs your permission to:</p> <ul> <li> <p>Read input data from an S3 bucket</p> </li> <li> <p>Write model artifacts to an S3 bucket</p> </li> <li> <p>Write logs to Amazon CloudWatch Logs</p> </li> <li> <p>Publish metrics to Amazon CloudWatch</p> </li> </ul> <p>You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles.</a> </p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>The duration allowed for model compilation.</p>
    #[serde(rename = "StoppingCondition")]
    pub stopping_condition: StoppingCondition,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateCompilationJobResponse {
    /// <p><p>If the action is successful, the service sends back an HTTP 200 response. Amazon SageMaker returns the following data in JSON format:</p> <ul> <li> <p> <code>CompilationJobArn</code>: The Amazon Resource Name (ARN) of the compiled job.</p> </li> </ul></p>
    #[serde(rename = "CompilationJobArn")]
    pub compilation_job_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateEndpointConfigInput {
    /// <p>The name of the endpoint configuration. You specify this name in a <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> request. </p>
    #[serde(rename = "EndpointConfigName")]
    pub endpoint_config_name: String,
    /// <p>The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.</p>
    #[serde(rename = "KmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kms_key_id: Option<String>,
    /// <p>An list of <code>ProductionVariant</code> objects, one for each model that you want to host at this endpoint.</p>
    #[serde(rename = "ProductionVariants")]
    pub production_variants: Vec<ProductionVariant>,
    /// <p>A list of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i> AWS Billing and Cost Management User Guide</i>. </p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateEndpointConfigOutput {
    /// <p>The Amazon Resource Name (ARN) of the endpoint configuration. </p>
    #[serde(rename = "EndpointConfigArn")]
    pub endpoint_config_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateEndpointInput {
    /// <p>The name of an endpoint configuration. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html">CreateEndpointConfig</a>. </p>
    #[serde(rename = "EndpointConfigName")]
    pub endpoint_config_name: String,
    /// <p>The name of the endpoint. The name must be unique within an AWS Region in your AWS account.</p>
    #[serde(rename = "EndpointName")]
    pub endpoint_name: String,
    /// <p>An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a>in the <i>AWS Billing and Cost Management User Guide</i>. </p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateEndpointOutput {
    /// <p>The Amazon Resource Name (ARN) of the endpoint.</p>
    #[serde(rename = "EndpointArn")]
    pub endpoint_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateHyperParameterTuningJobRequest {
    /// <p>The <a>HyperParameterTuningJobConfig</a> object that describes the tuning job, including the search strategy, the objective metric used to evaluate training jobs, ranges of parameters to search, and resource limits for the tuning job. For more information, see <a>automatic-model-tuning</a> </p>
    #[serde(rename = "HyperParameterTuningJobConfig")]
    pub hyper_parameter_tuning_job_config: HyperParameterTuningJobConfig,
    /// <p>The name of the tuning job. This name is the prefix for the names of all training jobs that this tuning job launches. The name must be unique within the same AWS account and AWS Region. The name must have { } to { } characters. Valid characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case sensitive.</p>
    #[serde(rename = "HyperParameterTuningJobName")]
    pub hyper_parameter_tuning_job_name: String,
    /// <p>An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also added to all training jobs that the tuning job launches.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
    /// <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the training jobs that this tuning job launches, including static hyperparameters, input data configuration, output data configuration, resource configuration, and stopping condition.</p>
    #[serde(rename = "TrainingJobDefinition")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_job_definition: Option<HyperParameterTrainingJobDefinition>,
    /// <p><p>Specifies the configuration for starting the hyperparameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p> <p>All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric. If you specify <code>IDENTICAL<em>DATA</em>AND_ALGORITHM</code> as the <code>WarmStartType</code> value for the warm start configuration, the training job that performs the best in the new tuning job is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.</p> <note> <p>All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.</p> </note></p>
    #[serde(rename = "WarmStartConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub warm_start_config: Option<HyperParameterTuningJobWarmStartConfig>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateHyperParameterTuningJobResponse {
    /// <p>The Amazon Resource Name (ARN) of the tuning job. Amazon SageMaker assigns an ARN to a hyperparameter tuning job when you create it.</p>
    #[serde(rename = "HyperParameterTuningJobArn")]
    pub hyper_parameter_tuning_job_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateLabelingJobRequest {
    /// <p>Configures the information required for human workers to complete a labeling task.</p>
    #[serde(rename = "HumanTaskConfig")]
    pub human_task_config: HumanTaskConfig,
    /// <p>Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.</p>
    #[serde(rename = "InputConfig")]
    pub input_config: LabelingJobInputConfig,
    /// <p>The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The name can't end with "-metadata". If you are running a semantic segmentation labeling job, the attribute name must end with "-ref". If you are running any other kind of labeling job, the attribute name must not end with "-ref".</p>
    #[serde(rename = "LabelAttributeName")]
    pub label_attribute_name: String,
    /// <p>The S3 URL of the file that defines the categories used to label the data objects.</p> <p>The file is a JSON structure in the following format:</p> <p> <code>{</code> </p> <p> <code> "document-version": "2018-11-28"</code> </p> <p> <code> "labels": [</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label 1</i>"</code> </p> <p> <code> },</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label 2</i>"</code> </p> <p> <code> },</code> </p> <p> <code> ...</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label n</i>"</code> </p> <p> <code> }</code> </p> <p> <code> ]</code> </p> <p> <code>}</code> </p>
    #[serde(rename = "LabelCategoryConfigS3Uri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub label_category_config_s3_uri: Option<String>,
    /// <p>Configures the information required to perform automated data labeling.</p>
    #[serde(rename = "LabelingJobAlgorithmsConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_algorithms_config: Option<LabelingJobAlgorithmsConfig>,
    /// <p>The name of the labeling job. This name is used to identify the job in a list of labeling jobs.</p>
    #[serde(rename = "LabelingJobName")]
    pub labeling_job_name: String,
    /// <p>The location of the output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.</p>
    #[serde(rename = "OutputConfig")]
    pub output_config: LabelingJobOutputConfig,
    /// <p>The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.</p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>A set of conditions for stopping the labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.</p>
    #[serde(rename = "StoppingConditions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stopping_conditions: Option<LabelingJobStoppingConditions>,
    /// <p>An array of key/value pairs. For more information, see <a href="http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateLabelingJobResponse {
    /// <p>The Amazon Resource Name (ARN) of the labeling job. You use this ARN to identify the labeling job.</p>
    #[serde(rename = "LabelingJobArn")]
    pub labeling_job_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateModelInput {
    /// <p>Specifies the containers in the inference pipeline.</p>
    #[serde(rename = "Containers")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub containers: Option<Vec<ContainerDefinition>>,
    /// <p><p>Isolates the model container. No inbound or outbound network calls can be made to or from the model container.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p>
    #[serde(rename = "EnableNetworkIsolation")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_network_isolation: Option<bool>,
    /// <p><p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note></p>
    #[serde(rename = "ExecutionRoleArn")]
    pub execution_role_arn: String,
    /// <p>The name of the new model.</p>
    #[serde(rename = "ModelName")]
    pub model_name: String,
    /// <p>The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions. </p>
    #[serde(rename = "PrimaryContainer")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub primary_container: Option<ContainerDefinition>,
    /// <p>An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>. </p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
    /// <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. <code>VpcConfig</code> is used in hosting services and in batch transform. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html">Protect Endpoints by Using an Amazon Virtual Private Cloud</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-vpc.html">Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
    #[serde(rename = "VpcConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub vpc_config: Option<VpcConfig>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateModelOutput {
    /// <p>The ARN of the model created in Amazon SageMaker.</p>
    #[serde(rename = "ModelArn")]
    pub model_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateModelPackageInput {
    /// <p>Whether to certify the model package for listing on AWS Marketplace.</p>
    #[serde(rename = "CertifyForMarketplace")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub certify_for_marketplace: Option<bool>,
    /// <p><p>Specifies details about inference jobs that can be run with models based on this model package, including the following:</p> <ul> <li> <p>The Amazon ECR paths of containers that contain the inference code and model artifacts.</p> </li> <li> <p>The instance types that the model package supports for transform jobs and real-time endpoints used for inference.</p> </li> <li> <p>The input and output content formats that the model package supports for inference.</p> </li> </ul></p>
    #[serde(rename = "InferenceSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub inference_specification: Option<InferenceSpecification>,
    /// <p>A description of the model package.</p>
    #[serde(rename = "ModelPackageDescription")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model_package_description: Option<String>,
    /// <p>The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p>
    #[serde(rename = "ModelPackageName")]
    pub model_package_name: String,
    /// <p>Details about the algorithm that was used to create the model package.</p>
    #[serde(rename = "SourceAlgorithmSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub source_algorithm_specification: Option<SourceAlgorithmSpecification>,
    /// <p>Specifies configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.</p>
    #[serde(rename = "ValidationSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub validation_specification: Option<ModelPackageValidationSpecification>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateModelPackageOutput {
    /// <p>The Amazon Resource Name (ARN) of the new model package.</p>
    #[serde(rename = "ModelPackageArn")]
    pub model_package_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateNotebookInstanceInput {
    /// <p>A list of Elastic Inference (EI) instance types to associate with this notebook instance. Currently, only one instance type can be associated with a notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>.</p>
    #[serde(rename = "AcceleratorTypes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub accelerator_types: Option<Vec<String>>,
    /// <p>An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p>
    #[serde(rename = "AdditionalCodeRepositories")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub additional_code_repositories: Option<Vec<String>>,
    /// <p>A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p>
    #[serde(rename = "DefaultCodeRepository")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub default_code_repository: Option<String>,
    /// <p>Sets whether Amazon SageMaker provides internet access to the notebook instance. If you set this to <code>Disabled</code> this notebook instance will be able to access resources only in your VPC, and will not be able to connect to Amazon SageMaker training and endpoint services unless your configure a NAT Gateway in your VPC.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access">Notebook Instances Are Internet-Enabled by Default</a>. You can set the value of this parameter to <code>Disabled</code> only if you set a value for the <code>SubnetId</code> parameter.</p>
    #[serde(rename = "DirectInternetAccess")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub direct_internet_access: Option<String>,
    /// <p>The type of ML compute instance to launch for the notebook instance.</p>
    #[serde(rename = "InstanceType")]
    pub instance_type: String,
    /// <p>The Amazon Resource Name (ARN) of a AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see <a href="http://docs.aws.amazon.com/kms/latest/developerguide/enabling-keys.html">Enabling and Disabling Keys</a> in the <i>AWS Key Management Service Developer Guide</i>.</p>
    #[serde(rename = "KmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kms_key_id: Option<String>,
    /// <p>The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
    #[serde(rename = "LifecycleConfigName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lifecycle_config_name: Option<String>,
    /// <p>The name of the new notebook instance.</p>
    #[serde(rename = "NotebookInstanceName")]
    pub notebook_instance_name: String,
    /// <p><p> When you send any requests to AWS resources from the notebook instance, Amazon SageMaker assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so Amazon SageMaker can perform these tasks. The policy must allow the Amazon SageMaker service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note></p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p><p>Whether root access is enabled or disabled for users of the notebook instance. The default value is <code>Enabled</code>.</p> <note> <p>Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.</p> </note></p>
    #[serde(rename = "RootAccess")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub root_access: Option<String>,
    /// <p>The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet. </p>
    #[serde(rename = "SecurityGroupIds")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub security_group_ids: Option<Vec<String>>,
    /// <p>The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance. </p>
    #[serde(rename = "SubnetId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub subnet_id: Option<String>,
    /// <p>A list of tags to associate with the notebook instance. You can add tags later by using the <code>CreateTags</code> API.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
    /// <p>The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.</p>
    #[serde(rename = "VolumeSizeInGB")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub volume_size_in_gb: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateNotebookInstanceLifecycleConfigInput {
    /// <p>The name of the lifecycle configuration.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigName")]
    pub notebook_instance_lifecycle_config_name: String,
    /// <p>A shell script that runs only once, when you create a notebook instance. The shell script must be a base64-encoded string.</p>
    #[serde(rename = "OnCreate")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub on_create: Option<Vec<NotebookInstanceLifecycleHook>>,
    /// <p>A shell script that runs every time you start a notebook instance, including when you create the notebook instance. The shell script must be a base64-encoded string.</p>
    #[serde(rename = "OnStart")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub on_start: Option<Vec<NotebookInstanceLifecycleHook>>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateNotebookInstanceLifecycleConfigOutput {
    /// <p>The Amazon Resource Name (ARN) of the lifecycle configuration.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_lifecycle_config_arn: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateNotebookInstanceOutput {
    /// <p>The Amazon Resource Name (ARN) of the notebook instance. </p>
    #[serde(rename = "NotebookInstanceArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_arn: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreatePresignedNotebookInstanceUrlInput {
    /// <p>The name of the notebook instance.</p>
    #[serde(rename = "NotebookInstanceName")]
    pub notebook_instance_name: String,
    /// <p>The duration of the session, in seconds. The default is 12 hours.</p>
    #[serde(rename = "SessionExpirationDurationInSeconds")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub session_expiration_duration_in_seconds: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreatePresignedNotebookInstanceUrlOutput {
    /// <p>A JSON object that contains the URL string. </p>
    #[serde(rename = "AuthorizedUrl")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub authorized_url: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateTrainingJobRequest {
    /// <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>. </p>
    #[serde(rename = "AlgorithmSpecification")]
    pub algorithm_specification: AlgorithmSpecification,
    /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
    #[serde(rename = "EnableInterContainerTrafficEncryption")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_inter_container_traffic_encryption: Option<bool>,
    /// <p><p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p>
    #[serde(rename = "EnableNetworkIsolation")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_network_isolation: Option<bool>,
    /// <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>. </p>
    #[serde(rename = "HyperParameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub hyper_parameters: Option<::std::collections::HashMap<String, String>>,
    /// <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location. </p> <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3 location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. </p> <p>Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. </p>
    #[serde(rename = "InputDataConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_config: Option<Vec<Channel>>,
    /// <p>Specifies the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts. </p>
    #[serde(rename = "OutputDataConfig")]
    pub output_data_config: OutputDataConfig,
    /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training. </p> <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
    #[serde(rename = "ResourceConfig")]
    pub resource_config: ResourceConfig,
    /// <p><p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf. </p> <p>During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note></p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>Sets a duration for training. Use this parameter to cap model training costs. To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts. </p> <p>When Amazon SageMaker terminates a job because the stopping condition has been met, training algorithms provided by Amazon SageMaker save the intermediate results of the job. This intermediate data is a valid model artifact. You can use it to create a model using the <code>CreateModel</code> API. </p>
    #[serde(rename = "StoppingCondition")]
    pub stopping_condition: StoppingCondition,
    /// <p>An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>. </p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
    /// <p>The name of the training job. The name must be unique within an AWS Region in an AWS account. </p>
    #[serde(rename = "TrainingJobName")]
    pub training_job_name: String,
    /// <p>A <a>VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
    #[serde(rename = "VpcConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub vpc_config: Option<VpcConfig>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateTrainingJobResponse {
    /// <p>The Amazon Resource Name (ARN) of the training job.</p>
    #[serde(rename = "TrainingJobArn")]
    pub training_job_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateTransformJobRequest {
    /// <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i/> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. </p> <p>To enable the batch strategy, you must set <code>SplitType</code> to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p> <p>To use only one record when making an HTTP invocation request to a container, set <code>BatchStrategy</code> to <code>SingleRecord</code> and <code>SplitType</code> to <code>Line</code>.</p> <p>To fit as many records in a mini-batch as can fit within the <code>MaxPayloadInMB</code> limit, set <code>BatchStrategy</code> to <code>MultiRecord</code> and <code>SplitType</code> to <code>Line</code>.</p>
    #[serde(rename = "BatchStrategy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_strategy: Option<String>,
    /// <p>The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.</p>
    #[serde(rename = "Environment")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub environment: Option<::std::collections::HashMap<String, String>>,
    /// <p>The maximum number of parallel requests that can be sent to each instance in a transform job. If <code>MaxConcurrentTransforms</code> is set to <code>0</code> or left unset, Amazon SageMaker checks the optional execution-parameters to determine the optimal settings for your chosen algorithm. If the execution-parameters endpoint is not enabled, the default value is <code>1</code>. For more information on execution-parameters, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-batch-code.html#your-algorithms-batch-code-how-containe-serves-requests">How Containers Serve Requests</a>. For built-in algorithms, you don't need to set a value for <code>MaxConcurrentTransforms</code>.</p>
    #[serde(rename = "MaxConcurrentTransforms")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_concurrent_transforms: Option<i64>,
    /// <p>The maximum allowed size of the payload, in MB. A <i>payload</i> is the data portion of a record (without metadata). The value in <code>MaxPayloadInMB</code> must be greater than, or equal to, the size of a single record. To estimate the size of a record in MB, divide the size of your dataset by the number of records. To ensure that the records fit within the maximum payload size, we recommend using a slightly larger value. The default value is <code>6</code> MB. </p> <p>For cases where the payload might be arbitrarily large and is transmitted using HTTP chunked encoding, set the value to <code>0</code>. This feature works only in supported algorithms. Currently, Amazon SageMaker built-in algorithms do not support HTTP chunked encoding.</p>
    #[serde(rename = "MaxPayloadInMB")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_payload_in_mb: Option<i64>,
    /// <p>The name of the model that you want to use for the transform job. <code>ModelName</code> must be the name of an existing Amazon SageMaker model within an AWS Region in an AWS account.</p>
    #[serde(rename = "ModelName")]
    pub model_name: String,
    /// <p>(Optional) An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
    /// <p>Describes the input source and the way the transform job consumes it.</p>
    #[serde(rename = "TransformInput")]
    pub transform_input: TransformInput,
    /// <p>The name of the transform job. The name must be unique within an AWS Region in an AWS account. </p>
    #[serde(rename = "TransformJobName")]
    pub transform_job_name: String,
    /// <p>Describes the results of the transform job.</p>
    #[serde(rename = "TransformOutput")]
    pub transform_output: TransformOutput,
    /// <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p>
    #[serde(rename = "TransformResources")]
    pub transform_resources: TransformResources,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateTransformJobResponse {
    /// <p>The Amazon Resource Name (ARN) of the transform job.</p>
    #[serde(rename = "TransformJobArn")]
    pub transform_job_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct CreateWorkteamRequest {
    /// <p>A description of the work team.</p>
    #[serde(rename = "Description")]
    pub description: String,
    /// <p>A list of <code>MemberDefinition</code> objects that contains objects that identify the Amazon Cognito user pool that makes up the work team. For more information, see <a href="http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html">Amazon Cognito User Pools</a>.</p> <p>All of the <code>CognitoMemberDefinition</code> objects that make up the member definition must have the same <code>ClientId</code> and <code>UserPool</code> values.</p>
    #[serde(rename = "MemberDefinitions")]
    pub member_definitions: Vec<MemberDefinition>,
    /// <p>Configures notification of workers regarding available or expiring work items.</p>
    #[serde(rename = "NotificationConfiguration")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_configuration: Option<NotificationConfiguration>,
    /// <p><p/></p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
    /// <p>The name of the work team. Use this name to identify the work team.</p>
    #[serde(rename = "WorkteamName")]
    pub workteam_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct CreateWorkteamResponse {
    /// <p>The Amazon Resource Name (ARN) of the work team. You can use this ARN to identify the work team.</p>
    #[serde(rename = "WorkteamArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub workteam_arn: Option<String>,
}

/// <p>Describes the location of the channel data.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct DataSource {
    /// <p>The S3 location of the data source that is associated with a channel.</p>
    #[serde(rename = "S3DataSource")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub s3_data_source: Option<S3DataSource>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteAlgorithmInput {
    /// <p>The name of the algorithm to delete.</p>
    #[serde(rename = "AlgorithmName")]
    pub algorithm_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteCodeRepositoryInput {
    /// <p>The name of the Git repository to delete.</p>
    #[serde(rename = "CodeRepositoryName")]
    pub code_repository_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteEndpointConfigInput {
    /// <p>The name of the endpoint configuration that you want to delete.</p>
    #[serde(rename = "EndpointConfigName")]
    pub endpoint_config_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteEndpointInput {
    /// <p>The name of the endpoint that you want to delete.</p>
    #[serde(rename = "EndpointName")]
    pub endpoint_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteModelInput {
    /// <p>The name of the model to delete.</p>
    #[serde(rename = "ModelName")]
    pub model_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteModelPackageInput {
    /// <p>The name of the model package. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).</p>
    #[serde(rename = "ModelPackageName")]
    pub model_package_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteNotebookInstanceInput {
    /// <p>The name of the Amazon SageMaker notebook instance to delete.</p>
    #[serde(rename = "NotebookInstanceName")]
    pub notebook_instance_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteNotebookInstanceLifecycleConfigInput {
    /// <p>The name of the lifecycle configuration to delete.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigName")]
    pub notebook_instance_lifecycle_config_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteTagsInput {
    /// <p>The Amazon Resource Name (ARN) of the resource whose tags you want to delete.</p>
    #[serde(rename = "ResourceArn")]
    pub resource_arn: String,
    /// <p>An array or one or more tag keys to delete.</p>
    #[serde(rename = "TagKeys")]
    pub tag_keys: Vec<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteTagsOutput {}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DeleteWorkteamRequest {
    /// <p>The name of the work team to delete.</p>
    #[serde(rename = "WorkteamName")]
    pub workteam_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeleteWorkteamResponse {
    /// <p>Returns <code>true</code> if the work team was successfully deleted; otherwise, returns <code>false</code>.</p>
    #[serde(rename = "Success")]
    pub success: bool,
}

/// <p>Gets the Amazon EC2 Container Registry path of the docker image of the model that is hosted in this <a>ProductionVariant</a>.</p> <p>If you used the <code>registry/repository[:tag]</code> form to specify the image path of the primary container when you created the model hosted in this <code>ProductionVariant</code>, the path resolves to a path of the form <code>registry/repository[@digest]</code>. A digest is a hash value that identifies a specific version of an image. For information about Amazon ECR paths, see <a href="http://docs.aws.amazon.com//AmazonECR/latest/userguide/docker-pull-ecr-image.html">Pulling an Image</a> in the <i>Amazon ECR User Guide</i>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DeployedImage {
    /// <p>The date and time when the image path for the model resolved to the <code>ResolvedImage</code> </p>
    #[serde(rename = "ResolutionTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resolution_time: Option<f64>,
    /// <p>The specific digest path of the image hosted in this <code>ProductionVariant</code>.</p>
    #[serde(rename = "ResolvedImage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resolved_image: Option<String>,
    /// <p>The image path you specified when you created the model.</p>
    #[serde(rename = "SpecifiedImage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub specified_image: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeAlgorithmInput {
    /// <p>The name of the algorithm to describe.</p>
    #[serde(rename = "AlgorithmName")]
    pub algorithm_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeAlgorithmOutput {
    /// <p>The Amazon Resource Name (ARN) of the algorithm.</p>
    #[serde(rename = "AlgorithmArn")]
    pub algorithm_arn: String,
    /// <p>A brief summary about the algorithm.</p>
    #[serde(rename = "AlgorithmDescription")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub algorithm_description: Option<String>,
    /// <p>The name of the algorithm being described.</p>
    #[serde(rename = "AlgorithmName")]
    pub algorithm_name: String,
    /// <p>The current status of the algorithm.</p>
    #[serde(rename = "AlgorithmStatus")]
    pub algorithm_status: String,
    /// <p>Details about the current status of the algorithm.</p>
    #[serde(rename = "AlgorithmStatusDetails")]
    pub algorithm_status_details: AlgorithmStatusDetails,
    /// <p>Whether the algorithm is certified to be listed in AWS Marketplace.</p>
    #[serde(rename = "CertifyForMarketplace")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub certify_for_marketplace: Option<bool>,
    /// <p>A timestamp specifying when the algorithm was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>Details about inference jobs that the algorithm runs.</p>
    #[serde(rename = "InferenceSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub inference_specification: Option<InferenceSpecification>,
    /// <p>The product identifier of the algorithm.</p>
    #[serde(rename = "ProductId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub product_id: Option<String>,
    /// <p>Details about training jobs run by this algorithm.</p>
    #[serde(rename = "TrainingSpecification")]
    pub training_specification: TrainingSpecification,
    /// <p>Details about configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.</p>
    #[serde(rename = "ValidationSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub validation_specification: Option<AlgorithmValidationSpecification>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeCodeRepositoryInput {
    /// <p>The name of the Git repository to describe.</p>
    #[serde(rename = "CodeRepositoryName")]
    pub code_repository_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeCodeRepositoryOutput {
    /// <p>The Amazon Resource Name (ARN) of the Git repository.</p>
    #[serde(rename = "CodeRepositoryArn")]
    pub code_repository_arn: String,
    /// <p>The name of the Git repository.</p>
    #[serde(rename = "CodeRepositoryName")]
    pub code_repository_name: String,
    /// <p>The date and time that the repository was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository.</p>
    #[serde(rename = "GitConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub git_config: Option<GitConfig>,
    /// <p>The date and time that the repository was last changed.</p>
    #[serde(rename = "LastModifiedTime")]
    pub last_modified_time: f64,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeCompilationJobRequest {
    /// <p>The name of the model compilation job that you want information about.</p>
    #[serde(rename = "CompilationJobName")]
    pub compilation_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeCompilationJobResponse {
    /// <p>The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job's model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed. </p>
    #[serde(rename = "CompilationEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compilation_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.</p>
    #[serde(rename = "CompilationJobArn")]
    pub compilation_job_arn: String,
    /// <p>The name of the model compilation job.</p>
    #[serde(rename = "CompilationJobName")]
    pub compilation_job_name: String,
    /// <p>The status of the model compilation job.</p>
    #[serde(rename = "CompilationJobStatus")]
    pub compilation_job_status: String,
    /// <p>The time when the model compilation job started the <code>CompilationJob</code> instances. </p> <p>You are billed for the time between this timestamp and the timestamp in the <a>DescribeCompilationJobResponse$CompilationEndTime</a> field. In Amazon CloudWatch Logs, the start time might be later than this time. That's because it takes time to download the compilation job, which depends on the size of the compilation job container. </p>
    #[serde(rename = "CompilationStartTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compilation_start_time: Option<f64>,
    /// <p>The time that the model compilation job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>If a model compilation job failed, the reason it failed. </p>
    #[serde(rename = "FailureReason")]
    pub failure_reason: String,
    /// <p>Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.</p>
    #[serde(rename = "InputConfig")]
    pub input_config: InputConfig,
    /// <p>The time that the status of the model compilation job was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    pub last_modified_time: f64,
    /// <p>Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.</p>
    #[serde(rename = "ModelArtifacts")]
    pub model_artifacts: ModelArtifacts,
    /// <p>Information about the output location for the compiled model and the target device that the model runs on.</p>
    #[serde(rename = "OutputConfig")]
    pub output_config: OutputConfig,
    /// <p>The Amazon Resource Name (ARN) of the model compilation job.</p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>The duration allowed for model compilation.</p>
    #[serde(rename = "StoppingCondition")]
    pub stopping_condition: StoppingCondition,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeEndpointConfigInput {
    /// <p>The name of the endpoint configuration.</p>
    #[serde(rename = "EndpointConfigName")]
    pub endpoint_config_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeEndpointConfigOutput {
    /// <p>A timestamp that shows when the endpoint configuration was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The Amazon Resource Name (ARN) of the endpoint configuration.</p>
    #[serde(rename = "EndpointConfigArn")]
    pub endpoint_config_arn: String,
    /// <p>Name of the Amazon SageMaker endpoint configuration.</p>
    #[serde(rename = "EndpointConfigName")]
    pub endpoint_config_name: String,
    /// <p>AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.</p>
    #[serde(rename = "KmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kms_key_id: Option<String>,
    /// <p>An array of <code>ProductionVariant</code> objects, one for each model that you want to host at this endpoint.</p>
    #[serde(rename = "ProductionVariants")]
    pub production_variants: Vec<ProductionVariant>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeEndpointInput {
    /// <p>The name of the endpoint.</p>
    #[serde(rename = "EndpointName")]
    pub endpoint_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeEndpointOutput {
    /// <p>A timestamp that shows when the endpoint was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The Amazon Resource Name (ARN) of the endpoint.</p>
    #[serde(rename = "EndpointArn")]
    pub endpoint_arn: String,
    /// <p>The name of the endpoint configuration associated with this endpoint.</p>
    #[serde(rename = "EndpointConfigName")]
    pub endpoint_config_name: String,
    /// <p>Name of the endpoint.</p>
    #[serde(rename = "EndpointName")]
    pub endpoint_name: String,
    /// <p><p>The status of the endpoint.</p> <ul> <li> <p> <code>OutOfService</code>: Endpoint is not available to take incoming requests.</p> </li> <li> <p> <code>Creating</code>: <a>CreateEndpoint</a> is executing.</p> </li> <li> <p> <code>Updating</code>: <a>UpdateEndpoint</a> or <a>UpdateEndpointWeightsAndCapacities</a> is executing.</p> </li> <li> <p> <code>SystemUpdating</code>: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.</p> </li> <li> <p> <code>RollingBack</code>: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an <code>InService</code> status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an <a>UpdateEndpointWeightsAndCapacities</a> call or when the <a>UpdateEndpointWeightsAndCapacities</a> operation is called explicitly.</p> </li> <li> <p> <code>InService</code>: Endpoint is available to process incoming requests.</p> </li> <li> <p> <code>Deleting</code>: <a>DeleteEndpoint</a> is executing.</p> </li> <li> <p> <code>Failed</code>: Endpoint could not be created, updated, or re-scaled. Use <a>DescribeEndpointOutput$FailureReason</a> for information about the failure. <a>DeleteEndpoint</a> is the only operation that can be performed on a failed endpoint.</p> </li> </ul></p>
    #[serde(rename = "EndpointStatus")]
    pub endpoint_status: String,
    /// <p>If the status of the endpoint is <code>Failed</code>, the reason why it failed. </p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>A timestamp that shows when the endpoint was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    pub last_modified_time: f64,
    /// <p> An array of <a>ProductionVariantSummary</a> objects, one for each model hosted behind this endpoint. </p>
    #[serde(rename = "ProductionVariants")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub production_variants: Option<Vec<ProductionVariantSummary>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeHyperParameterTuningJobRequest {
    /// <p>The name of the tuning job to describe.</p>
    #[serde(rename = "HyperParameterTuningJobName")]
    pub hyper_parameter_tuning_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeHyperParameterTuningJobResponse {
    /// <p>A <a>TrainingJobSummary</a> object that describes the training job that completed with the best current <a>HyperParameterTuningJobObjective</a>.</p>
    #[serde(rename = "BestTrainingJob")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_training_job: Option<HyperParameterTrainingJobSummary>,
    /// <p>The date and time that the tuning job started.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>If the tuning job failed, the reason it failed.</p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>The date and time that the tuning job ended.</p>
    #[serde(rename = "HyperParameterTuningEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub hyper_parameter_tuning_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the tuning job.</p>
    #[serde(rename = "HyperParameterTuningJobArn")]
    pub hyper_parameter_tuning_job_arn: String,
    /// <p>The <a>HyperParameterTuningJobConfig</a> object that specifies the configuration of the tuning job.</p>
    #[serde(rename = "HyperParameterTuningJobConfig")]
    pub hyper_parameter_tuning_job_config: HyperParameterTuningJobConfig,
    /// <p>The name of the tuning job.</p>
    #[serde(rename = "HyperParameterTuningJobName")]
    pub hyper_parameter_tuning_job_name: String,
    /// <p>The status of the tuning job: InProgress, Completed, Failed, Stopping, or Stopped.</p>
    #[serde(rename = "HyperParameterTuningJobStatus")]
    pub hyper_parameter_tuning_job_status: String,
    /// <p>The date and time that the status of the tuning job was modified. </p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>The <a>ObjectiveStatusCounters</a> object that specifies the number of training jobs, categorized by the status of their final objective metric, that this tuning job launched.</p>
    #[serde(rename = "ObjectiveStatusCounters")]
    pub objective_status_counters: ObjectiveStatusCounters,
    /// <p>If the hyperparameter tuning job is an warm start tuning job with a <code>WarmStartType</code> of <code>IDENTICAL_DATA_AND_ALGORITHM</code>, this is the <a>TrainingJobSummary</a> for the training job with the best objective metric value of all training jobs launched by this tuning job and all parent jobs specified for the warm start tuning job.</p>
    #[serde(rename = "OverallBestTrainingJob")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub overall_best_training_job: Option<HyperParameterTrainingJobSummary>,
    /// <p>The <a>HyperParameterTrainingJobDefinition</a> object that specifies the definition of the training jobs that this tuning job launches.</p>
    #[serde(rename = "TrainingJobDefinition")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_job_definition: Option<HyperParameterTrainingJobDefinition>,
    /// <p>The <a>TrainingJobStatusCounters</a> object that specifies the number of training jobs, categorized by status, that this tuning job launched.</p>
    #[serde(rename = "TrainingJobStatusCounters")]
    pub training_job_status_counters: TrainingJobStatusCounters,
    /// <p>The configuration for starting the hyperparameter parameter tuning job using one or more previous tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p>
    #[serde(rename = "WarmStartConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub warm_start_config: Option<HyperParameterTuningJobWarmStartConfig>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeLabelingJobRequest {
    /// <p>The name of the labeling job to return information for.</p>
    #[serde(rename = "LabelingJobName")]
    pub labeling_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeLabelingJobResponse {
    /// <p>The date and time that the labeling job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>If the job failed, the reason that it failed. </p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>Configuration information required for human workers to complete a labeling task.</p>
    #[serde(rename = "HumanTaskConfig")]
    pub human_task_config: HumanTaskConfig,
    /// <p>Input configuration information for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects.</p>
    #[serde(rename = "InputConfig")]
    pub input_config: LabelingJobInputConfig,
    /// <p>A unique identifier for work done as part of a labeling job.</p>
    #[serde(rename = "JobReferenceCode")]
    pub job_reference_code: String,
    /// <p>The attribute used as the label in the output manifest file.</p>
    #[serde(rename = "LabelAttributeName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub label_attribute_name: Option<String>,
    /// <p>The S3 location of the JSON file that defines the categories used to label data objects.</p> <p>The file is a JSON structure in the following format:</p> <p> <code>{</code> </p> <p> <code> "document-version": "2018-11-28"</code> </p> <p> <code> "labels": [</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label 1</i>"</code> </p> <p> <code> },</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label 2</i>"</code> </p> <p> <code> },</code> </p> <p> <code> ...</code> </p> <p> <code> {</code> </p> <p> <code> "label": "<i>label n</i>"</code> </p> <p> <code> }</code> </p> <p> <code> ]</code> </p> <p> <code>}</code> </p>
    #[serde(rename = "LabelCategoryConfigS3Uri")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub label_category_config_s3_uri: Option<String>,
    /// <p>Provides a breakdown of the number of data objects labeled by humans, the number of objects labeled by machine, the number of objects than couldn't be labeled, and the total number of objects labeled. </p>
    #[serde(rename = "LabelCounters")]
    pub label_counters: LabelCounters,
    /// <p>Configuration information for automated data labeling.</p>
    #[serde(rename = "LabelingJobAlgorithmsConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_algorithms_config: Option<LabelingJobAlgorithmsConfig>,
    /// <p>The Amazon Resource Name (ARN) of the labeling job.</p>
    #[serde(rename = "LabelingJobArn")]
    pub labeling_job_arn: String,
    /// <p>The name assigned to the labeling job when it was created.</p>
    #[serde(rename = "LabelingJobName")]
    pub labeling_job_name: String,
    /// <p>The location of the output produced by the labeling job.</p>
    #[serde(rename = "LabelingJobOutput")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_output: Option<LabelingJobOutput>,
    /// <p>The processing status of the labeling job. </p>
    #[serde(rename = "LabelingJobStatus")]
    pub labeling_job_status: String,
    /// <p>The date and time that the labeling job was last updated.</p>
    #[serde(rename = "LastModifiedTime")]
    pub last_modified_time: f64,
    /// <p>The location of the job's output data and the AWS Key Management Service key ID for the key used to encrypt the output data, if any.</p>
    #[serde(rename = "OutputConfig")]
    pub output_config: LabelingJobOutputConfig,
    /// <p>The Amazon Resource Name (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling.</p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped.</p>
    #[serde(rename = "StoppingConditions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stopping_conditions: Option<LabelingJobStoppingConditions>,
    /// <p>An array of key/value pairs. For more information, see <a href="http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeModelInput {
    /// <p>The name of the model.</p>
    #[serde(rename = "ModelName")]
    pub model_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeModelOutput {
    /// <p>The containers in the inference pipeline.</p>
    #[serde(rename = "Containers")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub containers: Option<Vec<ContainerDefinition>>,
    /// <p>A timestamp that shows when the model was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p><p>If <code>True</code>, no inbound or outbound network calls can be made to or from the model container.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p>
    #[serde(rename = "EnableNetworkIsolation")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_network_isolation: Option<bool>,
    /// <p>The Amazon Resource Name (ARN) of the IAM role that you specified for the model.</p>
    #[serde(rename = "ExecutionRoleArn")]
    pub execution_role_arn: String,
    /// <p>The Amazon Resource Name (ARN) of the model.</p>
    #[serde(rename = "ModelArn")]
    pub model_arn: String,
    /// <p>Name of the Amazon SageMaker model.</p>
    #[serde(rename = "ModelName")]
    pub model_name: String,
    /// <p>The location of the primary inference code, associated artifacts, and custom environment map that the inference code uses when it is deployed in production. </p>
    #[serde(rename = "PrimaryContainer")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub primary_container: Option<ContainerDefinition>,
    /// <p>A <a>VpcConfig</a> object that specifies the VPC that this model has access to. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html">Protect Endpoints by Using an Amazon Virtual Private Cloud</a> </p>
    #[serde(rename = "VpcConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub vpc_config: Option<VpcConfig>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeModelPackageInput {
    /// <p>The name of the model package to describe.</p>
    #[serde(rename = "ModelPackageName")]
    pub model_package_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeModelPackageOutput {
    /// <p>Whether the model package is certified for listing on AWS Marketplace.</p>
    #[serde(rename = "CertifyForMarketplace")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub certify_for_marketplace: Option<bool>,
    /// <p>A timestamp specifying when the model package was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>Details about inference jobs that can be run with models based on this model package.</p>
    #[serde(rename = "InferenceSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub inference_specification: Option<InferenceSpecification>,
    /// <p>The Amazon Resource Name (ARN) of the model package.</p>
    #[serde(rename = "ModelPackageArn")]
    pub model_package_arn: String,
    /// <p>A brief summary of the model package.</p>
    #[serde(rename = "ModelPackageDescription")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model_package_description: Option<String>,
    /// <p>The name of the model package being described.</p>
    #[serde(rename = "ModelPackageName")]
    pub model_package_name: String,
    /// <p>The current status of the model package.</p>
    #[serde(rename = "ModelPackageStatus")]
    pub model_package_status: String,
    /// <p>Details about the current status of the model package.</p>
    #[serde(rename = "ModelPackageStatusDetails")]
    pub model_package_status_details: ModelPackageStatusDetails,
    /// <p>Details about the algorithm that was used to create the model package.</p>
    #[serde(rename = "SourceAlgorithmSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub source_algorithm_specification: Option<SourceAlgorithmSpecification>,
    /// <p>Configurations for one or more transform jobs that Amazon SageMaker runs to test the model package.</p>
    #[serde(rename = "ValidationSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub validation_specification: Option<ModelPackageValidationSpecification>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeNotebookInstanceInput {
    /// <p>The name of the notebook instance that you want information about.</p>
    #[serde(rename = "NotebookInstanceName")]
    pub notebook_instance_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeNotebookInstanceLifecycleConfigInput {
    /// <p>The name of the lifecycle configuration to describe.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigName")]
    pub notebook_instance_lifecycle_config_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeNotebookInstanceLifecycleConfigOutput {
    /// <p>A timestamp that tells when the lifecycle configuration was created.</p>
    #[serde(rename = "CreationTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time: Option<f64>,
    /// <p>A timestamp that tells when the lifecycle configuration was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the lifecycle configuration.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_lifecycle_config_arn: Option<String>,
    /// <p>The name of the lifecycle configuration.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_lifecycle_config_name: Option<String>,
    /// <p>The shell script that runs only once, when you create a notebook instance.</p>
    #[serde(rename = "OnCreate")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub on_create: Option<Vec<NotebookInstanceLifecycleHook>>,
    /// <p>The shell script that runs every time you start a notebook instance, including when you create the notebook instance.</p>
    #[serde(rename = "OnStart")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub on_start: Option<Vec<NotebookInstanceLifecycleHook>>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeNotebookInstanceOutput {
    /// <p>A list of the Elastic Inference (EI) instance types associated with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>.</p>
    #[serde(rename = "AcceleratorTypes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub accelerator_types: Option<Vec<String>>,
    /// <p>An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p>
    #[serde(rename = "AdditionalCodeRepositories")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub additional_code_repositories: Option<Vec<String>>,
    /// <p>A timestamp. Use this parameter to return the time when the notebook instance was created</p>
    #[serde(rename = "CreationTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time: Option<f64>,
    /// <p>The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p>
    #[serde(rename = "DefaultCodeRepository")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub default_code_repository: Option<String>,
    /// <p>Describes whether Amazon SageMaker provides internet access to the notebook instance. If this value is set to <i>Disabled</i>, the notebook instance does not have internet access, and cannot connect to Amazon SageMaker training and endpoint services.</p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/appendix-additional-considerations.html#appendix-notebook-and-internet-access">Notebook Instances Are Internet-Enabled by Default</a>.</p>
    #[serde(rename = "DirectInternetAccess")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub direct_internet_access: Option<String>,
    /// <p>If status is <code>Failed</code>, the reason it failed.</p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>The type of ML compute instance running on the notebook instance.</p>
    #[serde(rename = "InstanceType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub instance_type: Option<String>,
    /// <p>The AWS KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance. </p>
    #[serde(rename = "KmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kms_key_id: Option<String>,
    /// <p>A timestamp. Use this parameter to retrieve the time when the notebook instance was last modified. </p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>The network interface IDs that Amazon SageMaker created at the time of creating the instance. </p>
    #[serde(rename = "NetworkInterfaceId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub network_interface_id: Option<String>,
    /// <p>The Amazon Resource Name (ARN) of the notebook instance.</p>
    #[serde(rename = "NotebookInstanceArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_arn: Option<String>,
    /// <p>Returns the name of a notebook instance lifecycle configuration.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a> </p>
    #[serde(rename = "NotebookInstanceLifecycleConfigName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_lifecycle_config_name: Option<String>,
    /// <p>The name of the Amazon SageMaker notebook instance. </p>
    #[serde(rename = "NotebookInstanceName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_name: Option<String>,
    /// <p>The status of the notebook instance.</p>
    #[serde(rename = "NotebookInstanceStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_status: Option<String>,
    /// <p>The Amazon Resource Name (ARN) of the IAM role associated with the instance. </p>
    #[serde(rename = "RoleArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub role_arn: Option<String>,
    /// <p><p>Whether root access is enabled or disabled for users of the notebook instance.</p> <note> <p>Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.</p> </note></p>
    #[serde(rename = "RootAccess")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub root_access: Option<String>,
    /// <p>The IDs of the VPC security groups.</p>
    #[serde(rename = "SecurityGroups")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub security_groups: Option<Vec<String>>,
    /// <p>The ID of the VPC subnet.</p>
    #[serde(rename = "SubnetId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub subnet_id: Option<String>,
    /// <p>The URL that you use to connect to the Jupyter notebook that is running in your notebook instance. </p>
    #[serde(rename = "Url")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub url: Option<String>,
    /// <p>The size, in GB, of the ML storage volume attached to the notebook instance.</p>
    #[serde(rename = "VolumeSizeInGB")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub volume_size_in_gb: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeSubscribedWorkteamRequest {
    /// <p>The Amazon Resource Name (ARN) of the subscribed work team to describe.</p>
    #[serde(rename = "WorkteamArn")]
    pub workteam_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeSubscribedWorkteamResponse {
    /// <p>A <code>Workteam</code> instance that contains information about the work team.</p>
    #[serde(rename = "SubscribedWorkteam")]
    pub subscribed_workteam: SubscribedWorkteam,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeTrainingJobRequest {
    /// <p>The name of the training job.</p>
    #[serde(rename = "TrainingJobName")]
    pub training_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeTrainingJobResponse {
    /// <p>Information about the algorithm used for training, and algorithm metadata. </p>
    #[serde(rename = "AlgorithmSpecification")]
    pub algorithm_specification: AlgorithmSpecification,
    /// <p>A timestamp that indicates when the training job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.</p>
    #[serde(rename = "EnableInterContainerTrafficEncryption")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_inter_container_traffic_encryption: Option<bool>,
    /// <p><p>If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose <code>True</code>. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p>
    #[serde(rename = "EnableNetworkIsolation")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_network_isolation: Option<bool>,
    /// <p>If the training job failed, the reason it failed. </p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>A collection of <code>MetricData</code> objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.</p>
    #[serde(rename = "FinalMetricDataList")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub final_metric_data_list: Option<Vec<MetricData>>,
    /// <p>Algorithm-specific parameters. </p>
    #[serde(rename = "HyperParameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub hyper_parameters: Option<::std::collections::HashMap<String, String>>,
    /// <p>An array of <code>Channel</code> objects that describes each data input channel. </p>
    #[serde(rename = "InputDataConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_config: Option<Vec<Channel>>,
    /// <p>The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.</p>
    #[serde(rename = "LabelingJobArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_arn: Option<String>,
    /// <p>A timestamp that indicates when the status of the training job was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>Information about the Amazon S3 location that is configured for storing model artifacts. </p>
    #[serde(rename = "ModelArtifacts")]
    pub model_artifacts: ModelArtifacts,
    /// <p>The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts. </p>
    #[serde(rename = "OutputDataConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub output_data_config: Option<OutputDataConfig>,
    /// <p>Resources, including ML compute instances and ML storage volumes, that are configured for model training. </p>
    #[serde(rename = "ResourceConfig")]
    pub resource_config: ResourceConfig,
    /// <p>The AWS Identity and Access Management (IAM) role configured for the training job. </p>
    #[serde(rename = "RoleArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub role_arn: Option<String>,
    /// <p><p> Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see <code>StatusMessage</code> under <a>SecondaryStatusTransition</a>.</p> <p>Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <important> <p>Valid values for <code>SecondaryStatus</code> are subject to change. </p> </important> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTrainingStack</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul></p>
    #[serde(rename = "SecondaryStatus")]
    pub secondary_status: String,
    /// <p>A history of all of the secondary statuses that the training job has transitioned through.</p>
    #[serde(rename = "SecondaryStatusTransitions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub secondary_status_transitions: Option<Vec<SecondaryStatusTransition>>,
    /// <p>The condition under which to stop the training job. </p>
    #[serde(rename = "StoppingCondition")]
    pub stopping_condition: StoppingCondition,
    /// <p>Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of <code>TrainingStartTime</code> and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.</p>
    #[serde(rename = "TrainingEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the training job.</p>
    #[serde(rename = "TrainingJobArn")]
    pub training_job_arn: String,
    /// <p> Name of the model training job. </p>
    #[serde(rename = "TrainingJobName")]
    pub training_job_name: String,
    /// <p>The status of the training job.</p> <p>Amazon SageMaker provides the following training job statuses:</p> <ul> <li> <p> <code>InProgress</code> - The training is in progress.</p> </li> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> <li> <p> <code>Failed</code> - The training job has failed. To see the reason for the failure, see the <code>FailureReason</code> field in the response to a <code>DescribeTrainingJobResponse</code> call.</p> </li> <li> <p> <code>Stopping</code> - The training job is stopping.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> <p>For more detailed information, see <code>SecondaryStatus</code>. </p>
    #[serde(rename = "TrainingJobStatus")]
    pub training_job_status: String,
    /// <p>Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of <code>TrainingEndTime</code>. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.</p>
    #[serde(rename = "TrainingStartTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_start_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.</p>
    #[serde(rename = "TuningJobArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tuning_job_arn: Option<String>,
    /// <p>A <a>VpcConfig</a> object that specifies the VPC that this training job has access to. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
    #[serde(rename = "VpcConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub vpc_config: Option<VpcConfig>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeTransformJobRequest {
    /// <p>The name of the transform job that you want to view details of.</p>
    #[serde(rename = "TransformJobName")]
    pub transform_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeTransformJobResponse {
    /// <p>Specifies the number of records to include in a mini-batch for an HTTP inference request. A <i>record</i> <i/> is a single unit of input data that inference can be made on. For example, a single line in a CSV file is a record. </p> <p>To enable the batch strategy, you must set <code>SplitType</code> to <code>Line</code>, <code>RecordIO</code>, or <code>TFRecord</code>.</p>
    #[serde(rename = "BatchStrategy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_strategy: Option<String>,
    /// <p>A timestamp that shows when the transform Job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.</p>
    #[serde(rename = "Environment")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub environment: Option<::std::collections::HashMap<String, String>>,
    /// <p>If the transform job failed, <code>FailureReason</code> describes why it failed. A transform job creates a log file, which includes error messages, and stores it as an Amazon S3 object. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/logging-cloudwatch.html">Log Amazon SageMaker Events with Amazon CloudWatch</a>.</p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>The Amazon Resource Name (ARN) of the Amazon SageMaker Ground Truth labeling job that created the transform or training job.</p>
    #[serde(rename = "LabelingJobArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_arn: Option<String>,
    /// <p>The maximum number of parallel requests on each instance node that can be launched in a transform job. The default value is 1.</p>
    #[serde(rename = "MaxConcurrentTransforms")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_concurrent_transforms: Option<i64>,
    /// <p>The maximum payload size, in MB, used in the transform job.</p>
    #[serde(rename = "MaxPayloadInMB")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_payload_in_mb: Option<i64>,
    /// <p>The name of the model used in the transform job.</p>
    #[serde(rename = "ModelName")]
    pub model_name: String,
    /// <p>Indicates when the transform job has been completed, or has stopped or failed. You are billed for the time interval between this time and the value of <code>TransformStartTime</code>.</p>
    #[serde(rename = "TransformEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub transform_end_time: Option<f64>,
    /// <p>Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p>
    #[serde(rename = "TransformInput")]
    pub transform_input: TransformInput,
    /// <p>The Amazon Resource Name (ARN) of the transform job.</p>
    #[serde(rename = "TransformJobArn")]
    pub transform_job_arn: String,
    /// <p>The name of the transform job.</p>
    #[serde(rename = "TransformJobName")]
    pub transform_job_name: String,
    /// <p>The status of the transform job. If the transform job failed, the reason is returned in the <code>FailureReason</code> field.</p>
    #[serde(rename = "TransformJobStatus")]
    pub transform_job_status: String,
    /// <p>Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p>
    #[serde(rename = "TransformOutput")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub transform_output: Option<TransformOutput>,
    /// <p>Describes the resources, including ML instance types and ML instance count, to use for the transform job.</p>
    #[serde(rename = "TransformResources")]
    pub transform_resources: TransformResources,
    /// <p>Indicates when the transform job starts on ML instances. You are billed for the time interval between this time and the value of <code>TransformEndTime</code>.</p>
    #[serde(rename = "TransformStartTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub transform_start_time: Option<f64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DescribeWorkteamRequest {
    /// <p>The name of the work team to return a description of.</p>
    #[serde(rename = "WorkteamName")]
    pub workteam_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct DescribeWorkteamResponse {
    /// <p>A <code>Workteam</code> instance that contains information about the work team. </p>
    #[serde(rename = "Workteam")]
    pub workteam: Workteam,
}

/// <p>Specifies weight and capacity values for a production variant.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct DesiredWeightAndCapacity {
    /// <p>The variant's capacity.</p>
    #[serde(rename = "DesiredInstanceCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub desired_instance_count: Option<i64>,
    /// <p>The variant's weight.</p>
    #[serde(rename = "DesiredWeight")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub desired_weight: Option<f32>,
    /// <p>The name of the variant to update.</p>
    #[serde(rename = "VariantName")]
    pub variant_name: String,
}

/// <p>Provides summary information for an endpoint configuration.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct EndpointConfigSummary {
    /// <p>A timestamp that shows when the endpoint configuration was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The Amazon Resource Name (ARN) of the endpoint configuration.</p>
    #[serde(rename = "EndpointConfigArn")]
    pub endpoint_config_arn: String,
    /// <p>The name of the endpoint configuration.</p>
    #[serde(rename = "EndpointConfigName")]
    pub endpoint_config_name: String,
}

/// <p>Provides summary information for an endpoint.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct EndpointSummary {
    /// <p>A timestamp that shows when the endpoint was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The Amazon Resource Name (ARN) of the endpoint.</p>
    #[serde(rename = "EndpointArn")]
    pub endpoint_arn: String,
    /// <p>The name of the endpoint.</p>
    #[serde(rename = "EndpointName")]
    pub endpoint_name: String,
    /// <p>The status of the endpoint.</p> <ul> <li> <p> <code>OutOfService</code>: Endpoint is not available to take incoming requests.</p> </li> <li> <p> <code>Creating</code>: <a>CreateEndpoint</a> is executing.</p> </li> <li> <p> <code>Updating</code>: <a>UpdateEndpoint</a> or <a>UpdateEndpointWeightsAndCapacities</a> is executing.</p> </li> <li> <p> <code>SystemUpdating</code>: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count.</p> </li> <li> <p> <code>RollingBack</code>: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an <code>InService</code> status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an <a>UpdateEndpointWeightsAndCapacities</a> call or when the <a>UpdateEndpointWeightsAndCapacities</a> operation is called explicitly.</p> </li> <li> <p> <code>InService</code>: Endpoint is available to process incoming requests.</p> </li> <li> <p> <code>Deleting</code>: <a>DeleteEndpoint</a> is executing.</p> </li> <li> <p> <code>Failed</code>: Endpoint could not be created, updated, or re-scaled. Use <a>DescribeEndpointOutput$FailureReason</a> for information about the failure. <a>DeleteEndpoint</a> is the only operation that can be performed on a failed endpoint.</p> </li> </ul> <p>To get a list of endpoints with a specified status, use the <a>ListEndpointsInput$StatusEquals</a> filter.</p>
    #[serde(rename = "EndpointStatus")]
    pub endpoint_status: String,
    /// <p>A timestamp that shows when the endpoint was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    pub last_modified_time: f64,
}

/// <p><p>A conditional statement for a search expression that includes a Boolean operator, a resource property, and a value.</p> <p>If you don&#39;t specify an <code>Operator</code> and a <code>Value</code>, the filter searches for only the specified property. For example, defining a <code>Filter</code> for the <code>FailureReason</code> for the <code>TrainingJob</code> <code>Resource</code> searches for training job objects that have a value in the <code>FailureReason</code> field.</p> <p>If you specify a <code>Value</code>, but not an <code>Operator</code>, Amazon SageMaker uses the equals operator as the default.</p> <p>In search, there are several property types:</p> <dl> <dt>Metrics</dt> <dd> <p>To define a metric filter, enter a value using the form <code>&quot;Metrics.&lt;name&gt;&quot;</code>, where <code>&lt;name&gt;</code> is a metric name. For example, the following filter searches for training jobs with an <code>&quot;accuracy&quot;</code> metric greater than <code>&quot;0.9&quot;</code>:</p> <p> <code>{</code> </p> <p> <code>&quot;Name&quot;: &quot;Metrics.accuracy&quot;,</code> </p> <p> <code>&quot;Operator&quot;: &quot;GREATER<em>THAN&quot;,</code> </p> <p> <code>&quot;Value&quot;: &quot;0.9&quot;</code> </p> <p> <code>}</code> </p> </dd> <dt>HyperParameters</dt> <dd> <p>To define a hyperparameter filter, enter a value with the form <code>&quot;HyperParameters.&lt;name&gt;&quot;</code>. Decimal hyperparameter values are treated as a decimal in a comparison if the specified <code>Value</code> is also a decimal value. If the specified <code>Value</code> is an integer, the decimal hyperparameter values are treated as integers. For example, the following filter is satisfied by training jobs with a <code>&quot;learning</em>rate&quot;</code> hyperparameter that is less than <code>&quot;0.5&quot;</code>:</p> <p> <code> {</code> </p> <p> <code> &quot;Name&quot;: &quot;HyperParameters.learning<em>rate&quot;,</code> </p> <p> <code> &quot;Operator&quot;: &quot;LESS</em>THAN&quot;,</code> </p> <p> <code> &quot;Value&quot;: &quot;0.5&quot;</code> </p> <p> <code> }</code> </p> </dd> <dt>Tags</dt> <dd> <p>To define a tag filter, enter a value with the form <code>&quot;Tags.&lt;key&gt;&quot;</code>.</p> </dd> </dl></p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct Filter {
    /// <p>A property name. For example, <code>TrainingJobName</code>. For the list of valid property names returned in a search result for each supported resource, see <a>TrainingJob</a> properties. You must specify a valid property name for the resource.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p>A Boolean binary operator that is used to evaluate the filter. The operator field contains one of the following values:</p> <dl> <dt>Equals</dt> <dd> <p>The specified resource in <code>Name</code> equals the specified <code>Value</code>.</p> </dd> <dt>NotEquals</dt> <dd> <p>The specified resource in <code>Name</code> does not equal the specified <code>Value</code>.</p> </dd> <dt>GreaterThan</dt> <dd> <p>The specified resource in <code>Name</code> is greater than the specified <code>Value</code>. Not supported for text-based properties.</p> </dd> <dt>GreaterThanOrEqualTo</dt> <dd> <p>The specified resource in <code>Name</code> is greater than or equal to the specified <code>Value</code>. Not supported for text-based properties.</p> </dd> <dt>LessThan</dt> <dd> <p>The specified resource in <code>Name</code> is less than the specified <code>Value</code>. Not supported for text-based properties.</p> </dd> <dt>LessThanOrEqualTo</dt> <dd> <p>The specified resource in <code>Name</code> is less than or equal to the specified <code>Value</code>. Not supported for text-based properties.</p> </dd> <dt>Contains</dt> <dd> <p>Only supported for text-based properties. The word-list of the property contains the specified <code>Value</code>.</p> </dd> </dl> <p>If you have specified a filter <code>Value</code>, the default is <code>Equals</code>.</p>
    #[serde(rename = "Operator")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub operator: Option<String>,
    /// <p>A value used with <code>Resource</code> and <code>Operator</code> to determine if objects satisfy the filter's condition. For numerical properties, <code>Value</code> must be an integer or floating-point decimal. For timestamp properties, <code>Value</code> must be an ISO 8601 date-time string of the following format: <code>YYYY-mm-dd'T'HH:MM:SS</code>.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<String>,
}

/// <p>Shows the final value for the objective metric for a training job that was launched by a hyperparameter tuning job. You define the objective metric in the <code>HyperParameterTuningJobObjective</code> parameter of <a>HyperParameterTuningJobConfig</a>.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct FinalHyperParameterTuningJobObjectiveMetric {
    /// <p>The name of the objective metric.</p>
    #[serde(rename = "MetricName")]
    pub metric_name: String,
    /// <p>Whether to minimize or maximize the objective metric. Valid values are Minimize and Maximize.</p>
    #[serde(rename = "Type")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub type_: Option<String>,
    /// <p>The value of the objective metric.</p>
    #[serde(rename = "Value")]
    pub value: f32,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GetSearchSuggestionsRequest {
    /// <p>The name of the Amazon SageMaker resource to Search for. The only valid <code>Resource</code> value is <code>TrainingJob</code>.</p>
    #[serde(rename = "Resource")]
    pub resource: String,
    /// <p>Limits the property names that are included in the response.</p>
    #[serde(rename = "SuggestionQuery")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub suggestion_query: Option<SuggestionQuery>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct GetSearchSuggestionsResponse {
    /// <p>A list of property names for a <code>Resource</code> that match a <code>SuggestionQuery</code>.</p>
    #[serde(rename = "PropertyNameSuggestions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub property_name_suggestions: Option<Vec<PropertyNameSuggestion>>,
}

/// <p>Specifies configuration details for a Git repository in your AWS account.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct GitConfig {
    /// <p>The default branch for the Git repository.</p>
    #[serde(rename = "Branch")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub branch: Option<String>,
    /// <p>The URL where the Git repository is located.</p>
    #[serde(rename = "RepositoryUrl")]
    pub repository_url: String,
    /// <p>The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of <code>AWSCURRENT</code> and must be in the following format:</p> <p> <code>{"username": <i>UserName</i>, "password": <i>Password</i>}</code> </p>
    #[serde(rename = "SecretArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub secret_arn: Option<String>,
}

/// <p>Specifies configuration details for a Git repository when the repository is updated.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct GitConfigForUpdate {
    /// <p>The Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the git repository. The secret must have a staging label of <code>AWSCURRENT</code> and must be in the following format:</p> <p> <code>{"username": <i>UserName</i>, "password": <i>Password</i>}</code> </p>
    #[serde(rename = "SecretArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub secret_arn: Option<String>,
}

/// <p>Information required for human workers to complete a labeling task.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct HumanTaskConfig {
    /// <p>Configures how labels are consolidated across human workers.</p>
    #[serde(rename = "AnnotationConsolidationConfig")]
    pub annotation_consolidation_config: AnnotationConsolidationConfig,
    /// <p>Defines the maximum number of data objects that can be labeled by human workers at the same time. Each object may have more than one worker at one time.</p>
    #[serde(rename = "MaxConcurrentTaskCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_concurrent_task_count: Option<i64>,
    /// <p>The number of human workers that will label an object. </p>
    #[serde(rename = "NumberOfHumanWorkersPerDataObject")]
    pub number_of_human_workers_per_data_object: i64,
    /// <p><p>The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job.</p> <p>For the built-in bounding box, image classification, semantic segmentation, and text classification task types, Amazon SageMaker Ground Truth provides the following Lambda functions:</p> <p> <b>US East (Northern Virginia) (us-east-1):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>US East (Ohio) (us-east-2):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>US West (Oregon) (us-west-2):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>EU (Ireland) (eu-west-1):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>Asia Pacific (Tokyo (ap-northeast-1):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass</code> </p> </li> </ul> <p> <b>Asia Pacific (Sydney (ap-southeast-1):</b> </p> <ul> <li> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation</code> </p> </li> <li> <p> <code>arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass</code> </p> </li> </ul></p>
    #[serde(rename = "PreHumanTaskLambdaArn")]
    pub pre_human_task_lambda_arn: String,
    /// <p>The price that you pay for each task performed by a public worker.</p>
    #[serde(rename = "PublicWorkforceTaskPrice")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub public_workforce_task_price: Option<PublicWorkforceTaskPrice>,
    /// <p>The length of time that a task remains available for labelling by human workers.</p>
    #[serde(rename = "TaskAvailabilityLifetimeInSeconds")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub task_availability_lifetime_in_seconds: Option<i64>,
    /// <p>A description of the task for your human workers.</p>
    #[serde(rename = "TaskDescription")]
    pub task_description: String,
    /// <p>Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.</p>
    #[serde(rename = "TaskKeywords")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub task_keywords: Option<Vec<String>>,
    /// <p>The amount of time that a worker has to complete a task.</p>
    #[serde(rename = "TaskTimeLimitInSeconds")]
    pub task_time_limit_in_seconds: i64,
    /// <p>A title for the task for your human workers.</p>
    #[serde(rename = "TaskTitle")]
    pub task_title: String,
    /// <p>Information about the user interface that workers use to complete the labeling task.</p>
    #[serde(rename = "UiConfig")]
    pub ui_config: UiConfig,
    /// <p>The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.</p>
    #[serde(rename = "WorkteamArn")]
    pub workteam_arn: String,
}

/// <p>Specifies which training algorithm to use for training jobs that a hyperparameter tuning job launches and the metrics to monitor.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct HyperParameterAlgorithmSpecification {
    /// <p>The name of the resource algorithm to use for the hyperparameter tuning job. If you specify a value for this parameter, do not specify a value for <code>TrainingImage</code>.</p>
    #[serde(rename = "AlgorithmName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub algorithm_name: Option<String>,
    /// <p>An array of <a>MetricDefinition</a> objects that specify the metrics that the algorithm emits.</p>
    #[serde(rename = "MetricDefinitions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub metric_definitions: Option<Vec<MetricDefinition>>,
    /// <p> The registry path of the Docker image that contains the training algorithm. For information about Docker registry paths for built-in algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-algo-docker-registry-paths.html">Algorithms Provided by Amazon SageMaker: Common Parameters</a>. Amazon SageMaker supports both <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code> image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
    #[serde(rename = "TrainingImage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_image: Option<String>,
    /// <p>The input mode that the algorithm supports: File or Pipe. In File input mode, Amazon SageMaker downloads the training data from Amazon S3 to the storage volume that is attached to the training instance and mounts the directory to the Docker volume for the training container. In Pipe input mode, Amazon SageMaker streams data directly from Amazon S3 to the container. </p> <p>If you specify File mode, make sure that you provision the storage volume that is attached to the training instance with enough capacity to accommodate the training data downloaded from Amazon S3, the model artifacts, and intermediate information.</p> <p/> <p>For more information about input modes, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
    #[serde(rename = "TrainingInputMode")]
    pub training_input_mode: String,
}

/// <p>Defines a hyperparameter to be used by an algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct HyperParameterSpecification {
    /// <p>The default value for this hyperparameter. If a default value is specified, a hyperparameter cannot be required.</p>
    #[serde(rename = "DefaultValue")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub default_value: Option<String>,
    /// <p>A brief description of the hyperparameter.</p>
    #[serde(rename = "Description")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub description: Option<String>,
    /// <p>Indicates whether this hyperparameter is required.</p>
    #[serde(rename = "IsRequired")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub is_required: Option<bool>,
    /// <p>Indicates whether this hyperparameter is tunable in a hyperparameter tuning job.</p>
    #[serde(rename = "IsTunable")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub is_tunable: Option<bool>,
    /// <p>The name of this hyperparameter. The name must be unique.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p>The allowed range for this hyperparameter.</p>
    #[serde(rename = "Range")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub range: Option<ParameterRange>,
    /// <p>The type of this hyperparameter. The valid types are <code>Integer</code>, <code>Continuous</code>, <code>Categorical</code>, and <code>FreeText</code>.</p>
    #[serde(rename = "Type")]
    pub type_: String,
}

/// <p>Defines the training jobs launched by a hyperparameter tuning job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct HyperParameterTrainingJobDefinition {
    /// <p>The <a>HyperParameterAlgorithmSpecification</a> object that specifies the resource algorithm to use for the training jobs that the tuning job launches.</p>
    #[serde(rename = "AlgorithmSpecification")]
    pub algorithm_specification: HyperParameterAlgorithmSpecification,
    /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.</p>
    #[serde(rename = "EnableInterContainerTrafficEncryption")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_inter_container_traffic_encryption: Option<bool>,
    /// <p><p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p> <note> <p>The Semantic Segmentation built-in algorithm does not support network isolation.</p> </note></p>
    #[serde(rename = "EnableNetworkIsolation")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_network_isolation: Option<bool>,
    /// <p>An array of <a>Channel</a> objects that specify the input for the training jobs that the tuning job launches.</p>
    #[serde(rename = "InputDataConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_config: Option<Vec<Channel>>,
    /// <p>Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.</p>
    #[serde(rename = "OutputDataConfig")]
    pub output_data_config: OutputDataConfig,
    /// <p>The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.</p> <p>Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
    #[serde(rename = "ResourceConfig")]
    pub resource_config: ResourceConfig,
    /// <p>The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.</p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>Specifies the values of hyperparameters that do not change for the tuning job.</p>
    #[serde(rename = "StaticHyperParameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub static_hyper_parameters: Option<::std::collections::HashMap<String, String>>,
    /// <p>Sets a maximum duration for the training jobs that the tuning job launches. Use this parameter to limit model training costs. </p> <p>To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal. This delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts.</p> <p>When Amazon SageMaker terminates a job because the stopping condition has been met, training algorithms provided by Amazon SageMaker save the intermediate results of the job.</p>
    #[serde(rename = "StoppingCondition")]
    pub stopping_condition: StoppingCondition,
    /// <p>The <a>VpcConfig</a> object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
    #[serde(rename = "VpcConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub vpc_config: Option<VpcConfig>,
}

/// <p>Specifies summary information about a training job.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct HyperParameterTrainingJobSummary {
    /// <p>The date and time that the training job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The reason that the training job failed. </p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>The <a>FinalHyperParameterTuningJobObjectiveMetric</a> object that specifies the value of the objective metric of the tuning job that launched this training job.</p>
    #[serde(rename = "FinalHyperParameterTuningJobObjectiveMetric")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub final_hyper_parameter_tuning_job_objective_metric:
        Option<FinalHyperParameterTuningJobObjectiveMetric>,
    /// <p><p>The status of the objective metric for the training job:</p> <ul> <li> <p>Succeeded: The final objective metric for the training job was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.</p> </li> </ul> <ul> <li> <p>Pending: The training job is in progress and evaluation of its final objective metric is pending.</p> </li> </ul> <ul> <li> <p>Failed: The final objective metric for the training job was not evaluated, and was not used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.</p> </li> </ul></p>
    #[serde(rename = "ObjectiveStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub objective_status: Option<String>,
    /// <p>Specifies the time when the training job ends on training instances. You are billed for the time interval between the value of <code>TrainingStartTime</code> and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.</p>
    #[serde(rename = "TrainingEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the training job.</p>
    #[serde(rename = "TrainingJobArn")]
    pub training_job_arn: String,
    /// <p>The name of the training job.</p>
    #[serde(rename = "TrainingJobName")]
    pub training_job_name: String,
    /// <p>The status of the training job.</p>
    #[serde(rename = "TrainingJobStatus")]
    pub training_job_status: String,
    /// <p>The date and time that the training job started.</p>
    #[serde(rename = "TrainingStartTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_start_time: Option<f64>,
    /// <p>A list of the hyperparameters for which you specified ranges to search.</p>
    #[serde(rename = "TunedHyperParameters")]
    pub tuned_hyper_parameters: ::std::collections::HashMap<String, String>,
    /// <p>The HyperParameter tuning job that launched the training job.</p>
    #[serde(rename = "TuningJobName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tuning_job_name: Option<String>,
}

/// <p>Configures a hyperparameter tuning job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct HyperParameterTuningJobConfig {
    /// <p>The <a>HyperParameterTuningJobObjective</a> object that specifies the objective metric for this tuning job.</p>
    #[serde(rename = "HyperParameterTuningJobObjective")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub hyper_parameter_tuning_job_objective: Option<HyperParameterTuningJobObjective>,
    /// <p>The <a>ParameterRanges</a> object that specifies the ranges of hyperparameters that this tuning job searches.</p>
    #[serde(rename = "ParameterRanges")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub parameter_ranges: Option<ParameterRanges>,
    /// <p>The <a>ResourceLimits</a> object that specifies the maximum number of training jobs and parallel training jobs for this tuning job.</p>
    #[serde(rename = "ResourceLimits")]
    pub resource_limits: ResourceLimits,
    /// <p>Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. To use the Bayesian search stategy, set this to <code>Bayesian</code>. To randomly search, set it to <code>Random</code>. For information about search strategies, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How Hyperparameter Tuning Works</a>.</p>
    #[serde(rename = "Strategy")]
    pub strategy: String,
    /// <p><p>Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. This can be one of the following values (the default value is <code>OFF</code>):</p> <dl> <dt>OFF</dt> <dd> <p>Training jobs launched by the hyperparameter tuning job do not use early stopping.</p> </dd> <dt>AUTO</dt> <dd> <p>Amazon SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html">Stop Training Jobs Early</a>.</p> </dd> </dl></p>
    #[serde(rename = "TrainingJobEarlyStoppingType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_job_early_stopping_type: Option<String>,
}

/// <p>Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the <code>Type</code> parameter.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct HyperParameterTuningJobObjective {
    /// <p>The name of the metric to use for the objective metric.</p>
    #[serde(rename = "MetricName")]
    pub metric_name: String,
    /// <p>Whether to minimize or maximize the objective metric.</p>
    #[serde(rename = "Type")]
    pub type_: String,
}

/// <p>Provides summary information about a hyperparameter tuning job.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct HyperParameterTuningJobSummary {
    /// <p>The date and time that the tuning job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The date and time that the tuning job ended.</p>
    #[serde(rename = "HyperParameterTuningEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub hyper_parameter_tuning_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the tuning job.</p>
    #[serde(rename = "HyperParameterTuningJobArn")]
    pub hyper_parameter_tuning_job_arn: String,
    /// <p>The name of the tuning job.</p>
    #[serde(rename = "HyperParameterTuningJobName")]
    pub hyper_parameter_tuning_job_name: String,
    /// <p>The status of the tuning job.</p>
    #[serde(rename = "HyperParameterTuningJobStatus")]
    pub hyper_parameter_tuning_job_status: String,
    /// <p>The date and time that the tuning job was modified.</p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>The <a>ObjectiveStatusCounters</a> object that specifies the numbers of training jobs, categorized by objective metric status, that this tuning job launched.</p>
    #[serde(rename = "ObjectiveStatusCounters")]
    pub objective_status_counters: ObjectiveStatusCounters,
    /// <p>The <a>ResourceLimits</a> object that specifies the maximum number of training jobs and parallel training jobs allowed for this tuning job.</p>
    #[serde(rename = "ResourceLimits")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_limits: Option<ResourceLimits>,
    /// <p>Specifies the search strategy hyperparameter tuning uses to choose which hyperparameters to use for each iteration. Currently, the only valid value is Bayesian.</p>
    #[serde(rename = "Strategy")]
    pub strategy: String,
    /// <p>The <a>TrainingJobStatusCounters</a> object that specifies the numbers of training jobs, categorized by status, that this tuning job launched.</p>
    #[serde(rename = "TrainingJobStatusCounters")]
    pub training_job_status_counters: TrainingJobStatusCounters,
}

/// <p><p>Specifies the configuration for a hyperparameter tuning job that uses one or more previous hyperparameter tuning jobs as a starting point. The results of previous tuning jobs are used to inform which combinations of hyperparameters to search over in the new tuning job.</p> <p>All training jobs launched by the new hyperparameter tuning job are evaluated by using the objective metric, and the training job that performs the best is compared to the best training jobs from the parent tuning jobs. From these, the training job that performs the best as measured by the objective metric is returned as the overall best training job.</p> <note> <p>All training jobs launched by parent hyperparameter tuning jobs and the new hyperparameter tuning jobs count against the limit of training jobs for the tuning job.</p> </note></p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct HyperParameterTuningJobWarmStartConfig {
    /// <p>An array of hyperparameter tuning jobs that are used as the starting point for the new hyperparameter tuning job. For more information about warm starting a hyperparameter tuning job, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-warm-start.html">Using a Previous Hyperparameter Tuning Job as a Starting Point</a>.</p> <p>Hyperparameter tuning jobs created before October 1, 2018 cannot be used as parent jobs for warm start tuning jobs.</p>
    #[serde(rename = "ParentHyperParameterTuningJobs")]
    pub parent_hyper_parameter_tuning_jobs: Vec<ParentHyperParameterTuningJob>,
    /// <p><p>Specifies one of the following:</p> <dl> <dt>IDENTICAL<em>DATA</em>AND<em>ALGORITHM</dt> <dd> <p>The new hyperparameter tuning job uses the same input data and training image as the parent tuning jobs. You can change the hyperparameter ranges to search and the maximum number of training jobs that the hyperparameter tuning job launches. You cannot use a new version of the training algorithm, unless the changes in the new version do not affect the algorithm itself. For example, changes that improve logging or adding support for a different data format are allowed. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.</p> </dd> <dt>TRANSFER</em>LEARNING</dt> <dd> <p>The new hyperparameter tuning job can include input data, hyperparameter ranges, maximum number of concurrent training jobs, and maximum number of training jobs that are different than those of its parent hyperparameter tuning jobs. The training image can also be a different version from the version used in the parent hyperparameter tuning job. You can also change hyperparameters from tunable to static, and from static to tunable, but the total number of static plus tunable hyperparameters must remain the same as it is in all parent jobs. The objective metric for the new tuning job must be the same as for all parent jobs.</p> </dd> </dl></p>
    #[serde(rename = "WarmStartType")]
    pub warm_start_type: String,
}

/// <p>Defines how to perform inference generation after a training job is run.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct InferenceSpecification {
    /// <p>The Amazon ECR registry path of the Docker image that contains the inference code.</p>
    #[serde(rename = "Containers")]
    pub containers: Vec<ModelPackageContainerDefinition>,
    /// <p>The supported MIME types for the input data.</p>
    #[serde(rename = "SupportedContentTypes")]
    pub supported_content_types: Vec<String>,
    /// <p>A list of the instance types that are used to generate inferences in real-time.</p>
    #[serde(rename = "SupportedRealtimeInferenceInstanceTypes")]
    pub supported_realtime_inference_instance_types: Vec<String>,
    /// <p>The supported MIME types for the output data.</p>
    #[serde(rename = "SupportedResponseMIMETypes")]
    pub supported_response_mime_types: Vec<String>,
    /// <p>A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed.</p>
    #[serde(rename = "SupportedTransformInstanceTypes")]
    pub supported_transform_instance_types: Vec<String>,
}

/// <p>Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct InputConfig {
    /// <p><p>Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are <a>InputConfig$Framework</a> specific. </p> <ul> <li> <p> <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using the console, <code>{&quot;input&quot;:[1,1024,1024,3]}</code> </p> </li> <li> <p>If using the CLI, <code>{&quot;input&quot;:[1,1024,1024,3]}</code> </p> </li> </ul> </li> <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console, <code>{&quot;data1&quot;: [1,28,28,1], &quot;data2&quot;:[1,28,28,1]}</code> </p> </li> <li> <p>If using the CLI, <code>{&quot;data1&quot;: [1,28,28,1], &quot;data2&quot;:[1,28,28,1]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p> <code>MXNET/ONNX</code>: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p> <ul> <li> <p>Examples for one input:</p> <ul> <li> <p>If using the console, <code>{&quot;data&quot;:[1,3,1024,1024]}</code> </p> </li> <li> <p>If using the CLI, <code>{&quot;data&quot;:[1,3,1024,1024]}</code> </p> </li> </ul> </li> <li> <p>Examples for two inputs:</p> <ul> <li> <p>If using the console, <code>{&quot;var1&quot;: [1,1,28,28], &quot;var2&quot;:[1,1,28,28]} </code> </p> </li> <li> <p>If using the CLI, <code>{&quot;var1&quot;: [1,1,28,28], &quot;var2&quot;:[1,1,28,28]}</code> </p> </li> </ul> </li> </ul> </li> <li> <p> <code>PyTorch</code>: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.</p> <ul> <li> <p>Examples for one input in dictionary format:</p> <ul> <li> <p>If using the console, <code>{&quot;input0&quot;:[1,3,224,224]}</code> </p> </li> <li> <p>If using the CLI, <code>{&quot;input0&quot;:[1,3,224,224]}</code> </p> </li> </ul> </li> <li> <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li> <li> <p>Examples for two inputs in dictionary format:</p> <ul> <li> <p>If using the console, <code>{&quot;input0&quot;:[1,3,224,224], &quot;input1&quot;:[1,3,224,224]}</code> </p> </li> <li> <p>If using the CLI, <code>{&quot;input0&quot;:[1,3,224,224], &quot;input1&quot;:[1,3,224,224]} </code> </p> </li> </ul> </li> <li> <p>Example for two inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li> </ul> </li> <li> <p> <code>XGBOOST</code>: input data name and shape are not needed.</p> </li> </ul></p>
    #[serde(rename = "DataInputConfig")]
    pub data_input_config: String,
    /// <p>Identifies the framework in which the model was trained. For example: TENSORFLOW.</p>
    #[serde(rename = "Framework")]
    pub framework: String,
    /// <p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
    #[serde(rename = "S3Uri")]
    pub s3_uri: String,
}

/// <p>For a hyperparameter of the integer type, specifies the range that a hyperparameter tuning job searches.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct IntegerParameterRange {
    /// <p>The maximum value of the hyperparameter to search.</p>
    #[serde(rename = "MaxValue")]
    pub max_value: String,
    /// <p>The minimum value of the hyperparameter to search.</p>
    #[serde(rename = "MinValue")]
    pub min_value: String,
    /// <p>The name of the hyperparameter to search.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p><p>The scale that hyperparameter tuning uses to search the hyperparameter range. For information about choosing a hyperparameter scale, see <a href="http://docs.aws.amazon.com//sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon SageMaker hyperparameter tuning chooses the best scale for the hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches the values in the hyperparameter range by using a linear scale.</p> </dd> <dt>Logarithmic</dt> <dd> <p>Hyperparemeter tuning searches the values in the hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling works only for ranges that have only values greater than 0.</p> </dd> </dl></p>
    #[serde(rename = "ScalingType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub scaling_type: Option<String>,
}

/// <p>Defines the possible values for an integer hyperparameter.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct IntegerParameterRangeSpecification {
    /// <p>The maximum integer value allowed.</p>
    #[serde(rename = "MaxValue")]
    pub max_value: String,
    /// <p>The minimum integer value allowed.</p>
    #[serde(rename = "MinValue")]
    pub min_value: String,
}

/// <p>Provides a breakdown of the number of objects labeled.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct LabelCounters {
    /// <p>The total number of objects that could not be labeled due to an error.</p>
    #[serde(rename = "FailedNonRetryableError")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failed_non_retryable_error: Option<i64>,
    /// <p>The total number of objects labeled by a human worker.</p>
    #[serde(rename = "HumanLabeled")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub human_labeled: Option<i64>,
    /// <p>The total number of objects labeled by automated data labeling.</p>
    #[serde(rename = "MachineLabeled")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub machine_labeled: Option<i64>,
    /// <p>The total number of objects labeled.</p>
    #[serde(rename = "TotalLabeled")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub total_labeled: Option<i64>,
    /// <p>The total number of objects not yet labeled.</p>
    #[serde(rename = "Unlabeled")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub unlabeled: Option<i64>,
}

/// <p>Provides counts for human-labeled tasks in the labeling job.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct LabelCountersForWorkteam {
    /// <p>The total number of data objects labeled by a human worker.</p>
    #[serde(rename = "HumanLabeled")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub human_labeled: Option<i64>,
    /// <p>The total number of data objects that need to be labeled by a human worker.</p>
    #[serde(rename = "PendingHuman")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub pending_human: Option<i64>,
    /// <p>The total number of tasks in the labeling job.</p>
    #[serde(rename = "Total")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub total: Option<i64>,
}

/// <p>Provides configuration information for auto-labeling of your data objects. A <code>LabelingJobAlgorithmsConfig</code> object must be supplied in order to use auto-labeling.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct LabelingJobAlgorithmsConfig {
    /// <p>At the end of an auto-label job Amazon SageMaker Ground Truth sends the Amazon Resource Nam (ARN) of the final model used for auto-labeling. You can use this model as the starting point for subsequent similar jobs by providing the ARN of the model here. </p>
    #[serde(rename = "InitialActiveLearningModelArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub initial_active_learning_model_arn: Option<String>,
    /// <p><p>Specifies the Amazon Resource Name (ARN) of the algorithm used for auto-labeling. You must select one of the following ARNs:</p> <ul> <li> <p> <i>Image classification</i> </p> <p> <code>arn:aws:sagemaker:<i>region</i>:027400017018:labeling-job-algorithm-specification/image-classification</code> </p> </li> <li> <p> <i>Text classification</i> </p> <p> <code>arn:aws:sagemaker:<i>region</i>:027400017018:labeling-job-algorithm-specification/text-classification</code> </p> </li> <li> <p> <i>Object detection</i> </p> <p> <code>arn:aws:sagemaker:<i>region</i>:027400017018:labeling-job-algorithm-specification/object-detection</code> </p> </li> </ul></p>
    #[serde(rename = "LabelingJobAlgorithmSpecificationArn")]
    pub labeling_job_algorithm_specification_arn: String,
    /// <p>Provides configuration information for a labeling job.</p>
    #[serde(rename = "LabelingJobResourceConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_resource_config: Option<LabelingJobResourceConfig>,
}

/// <p>Attributes of the data specified by the customer. Use these to describe the data to be labeled.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct LabelingJobDataAttributes {
    /// <p>Declares that your content is free of personally identifiable information or adult content. Amazon SageMaker may restrict the Amazon Mechanical Turk workers that can view your task based on this information.</p>
    #[serde(rename = "ContentClassifiers")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub content_classifiers: Option<Vec<String>>,
}

/// <p>Provides information about the location of input data.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct LabelingJobDataSource {
    /// <p>The Amazon S3 location of the input data objects.</p>
    #[serde(rename = "S3DataSource")]
    pub s3_data_source: LabelingJobS3DataSource,
}

/// <p>Provides summary information for a work team.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct LabelingJobForWorkteamSummary {
    /// <p>The date and time that the labeling job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>A unique identifier for a labeling job. You can use this to refer to a specific labeling job.</p>
    #[serde(rename = "JobReferenceCode")]
    pub job_reference_code: String,
    /// <p>Provides information about the progress of a labeling job.</p>
    #[serde(rename = "LabelCounters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub label_counters: Option<LabelCountersForWorkteam>,
    /// <p>The name of the labeling job that the work team is assigned to.</p>
    #[serde(rename = "LabelingJobName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_name: Option<String>,
    /// <p>The configured number of workers per data object.</p>
    #[serde(rename = "NumberOfHumanWorkersPerDataObject")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub number_of_human_workers_per_data_object: Option<i64>,
    /// <p><p/></p>
    #[serde(rename = "WorkRequesterAccountId")]
    pub work_requester_account_id: String,
}

/// <p>Input configuration information for a labeling job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct LabelingJobInputConfig {
    /// <p>Attributes of the data specified by the customer.</p>
    #[serde(rename = "DataAttributes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub data_attributes: Option<LabelingJobDataAttributes>,
    /// <p>The location of the input data.</p>
    #[serde(rename = "DataSource")]
    pub data_source: LabelingJobDataSource,
}

/// <p>Specifies the location of the output produced by the labeling job. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct LabelingJobOutput {
    /// <p>The Amazon Resource Name (ARN) for the most recent Amazon SageMaker model trained as part of automated data labeling. </p>
    #[serde(rename = "FinalActiveLearningModelArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub final_active_learning_model_arn: Option<String>,
    /// <p>The Amazon S3 bucket location of the manifest file for labeled data. </p>
    #[serde(rename = "OutputDatasetS3Uri")]
    pub output_dataset_s3_uri: String,
}

/// <p>Output configuration information for a labeling job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct LabelingJobOutputConfig {
    /// <p>The AWS Key Management Service ID of the key used to encrypt the output data, if any.</p>
    #[serde(rename = "KmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kms_key_id: Option<String>,
    /// <p>The Amazon S3 location to write output data.</p>
    #[serde(rename = "S3OutputPath")]
    pub s3_output_path: String,
}

/// <p>Provides configuration information for labeling jobs.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct LabelingJobResourceConfig {
    /// <p>The AWS Key Management Service key ID for the key used to encrypt the output data, if any.</p>
    #[serde(rename = "VolumeKmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub volume_kms_key_id: Option<String>,
}

/// <p>The Amazon S3 location of the input data objects.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct LabelingJobS3DataSource {
    /// <p>The Amazon S3 location of the manifest file that describes the input data objects.</p>
    #[serde(rename = "ManifestS3Uri")]
    pub manifest_s3_uri: String,
}

/// <p>A set of conditions for stopping a labeling job. If any of the conditions are met, the job is automatically stopped. You can use these conditions to control the cost of data labeling.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct LabelingJobStoppingConditions {
    /// <p>The maximum number of objects that can be labeled by human workers.</p>
    #[serde(rename = "MaxHumanLabeledObjectCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_human_labeled_object_count: Option<i64>,
    /// <p>The maximum number of input data objects that should be labeled.</p>
    #[serde(rename = "MaxPercentageOfInputDatasetLabeled")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_percentage_of_input_dataset_labeled: Option<i64>,
}

/// <p>Provides summary information about a labeling job.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct LabelingJobSummary {
    /// <p>The Amazon Resource Name (ARN) of the Lambda function used to consolidate the annotations from individual workers into a label for a data object. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html">Annotation Consolidation</a>.</p>
    #[serde(rename = "AnnotationConsolidationLambdaArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub annotation_consolidation_lambda_arn: Option<String>,
    /// <p>The date and time that the job was created (timestamp).</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>If the <code>LabelingJobStatus</code> field is <code>Failed</code>, this field contains a description of the error.</p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>Input configuration for the labeling job.</p>
    #[serde(rename = "InputConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_config: Option<LabelingJobInputConfig>,
    /// <p>Counts showing the progress of the labeling job.</p>
    #[serde(rename = "LabelCounters")]
    pub label_counters: LabelCounters,
    /// <p>The Amazon Resource Name (ARN) assigned to the labeling job when it was created.</p>
    #[serde(rename = "LabelingJobArn")]
    pub labeling_job_arn: String,
    /// <p>The name of the labeling job.</p>
    #[serde(rename = "LabelingJobName")]
    pub labeling_job_name: String,
    /// <p>The location of the output produced by the labeling job.</p>
    #[serde(rename = "LabelingJobOutput")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_output: Option<LabelingJobOutput>,
    /// <p>The current status of the labeling job. </p>
    #[serde(rename = "LabelingJobStatus")]
    pub labeling_job_status: String,
    /// <p>The date and time that the job was last modified (timestamp).</p>
    #[serde(rename = "LastModifiedTime")]
    pub last_modified_time: f64,
    /// <p>The Amazon Resource Name (ARN) of a Lambda function. The function is run before each data object is sent to a worker.</p>
    #[serde(rename = "PreHumanTaskLambdaArn")]
    pub pre_human_task_lambda_arn: String,
    /// <p>The Amazon Resource Name (ARN) of the work team assigned to the job.</p>
    #[serde(rename = "WorkteamArn")]
    pub workteam_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListAlgorithmsInput {
    /// <p>A filter that returns only algorithms created after the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only algorithms created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>The maximum number of algorithms to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the response to a previous <code>ListAlgorithms</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of algorithms, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The parameter by which to sort the results. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for the results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListAlgorithmsOutput {
    /// <p>&gt;An array of <code>AlgorithmSummary</code> objects, each of which lists an algorithm.</p>
    #[serde(rename = "AlgorithmSummaryList")]
    pub algorithm_summary_list: Vec<AlgorithmSummary>,
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of algorithms, use it in the subsequent request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListCodeRepositoriesInput {
    /// <p>A filter that returns only Git repositories that were created after the specified time.</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only Git repositories that were created before the specified time.</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A filter that returns only Git repositories that were last modified after the specified time.</p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p>A filter that returns only Git repositories that were last modified before the specified time.</p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of Git repositories to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of a <code>ListCodeRepositoriesOutput</code> request was truncated, the response includes a <code>NextToken</code>. To get the next set of Git repositories, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>Name</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListCodeRepositoriesOutput {
    /// <p><p>Gets a list of summaries of the Git repositories. Each summary specifies the following values for the repository: </p> <ul> <li> <p>Name</p> </li> <li> <p>Amazon Resource Name (ARN)</p> </li> <li> <p>Creation time</p> </li> <li> <p>Last modified time</p> </li> <li> <p>Configuration information, including the URL location of the repository and the ARN of the AWS Secrets Manager secret that contains the credentials used to access the repository.</p> </li> </ul></p>
    #[serde(rename = "CodeRepositorySummaryList")]
    pub code_repository_summary_list: Vec<CodeRepositorySummary>,
    /// <p>If the result of a <code>ListCodeRepositoriesOutput</code> request was truncated, the response includes a <code>NextToken</code>. To get the next set of Git repositories, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListCompilationJobsRequest {
    /// <p>A filter that returns the model compilation jobs that were created after a specified time. </p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns the model compilation jobs that were created before a specified time.</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A filter that returns the model compilation jobs that were modified after a specified time.</p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p>A filter that returns the model compilation jobs that were modified before a specified time.</p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of model compilation jobs to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A filter that returns the model compilation jobs whose name contains a specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of the previous <code>ListCompilationJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of model compilation jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field by which to sort results. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p>A filter that retrieves model compilation jobs with a specific <a>DescribeCompilationJobResponse$CompilationJobStatus</a> status.</p>
    #[serde(rename = "StatusEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_equals: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListCompilationJobsResponse {
    /// <p>An array of <a>CompilationJobSummary</a> objects, each describing a model compilation job. </p>
    #[serde(rename = "CompilationJobSummaries")]
    pub compilation_job_summaries: Vec<CompilationJobSummary>,
    /// <p>If the response is truncated, Amazon SageMaker returns this <code>NextToken</code>. To retrieve the next set of model compilation jobs, use this token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListEndpointConfigsInput {
    /// <p>A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only endpoint configurations created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>The maximum number of training jobs to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string. </p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of the previous <code>ListEndpointConfig</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of endpoint configurations, use the token in the next request. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Descending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListEndpointConfigsOutput {
    /// <p>An array of endpoint configurations.</p>
    #[serde(rename = "EndpointConfigs")]
    pub endpoint_configs: Vec<EndpointConfigSummary>,
    /// <p> If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of endpoint configurations, use it in the subsequent request </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListEndpointsInput {
    /// <p>A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only endpoints that were created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p> A filter that returns only endpoints that were modified after the specified timestamp. </p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p> A filter that returns only endpoints that were modified before the specified timestamp. </p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of endpoints to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in endpoint names. This filter returns only endpoints whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of a <code>ListEndpoints</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of endpoints, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>Sorts the list of results. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Descending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p> A filter that returns only endpoints with the specified status.</p>
    #[serde(rename = "StatusEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_equals: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListEndpointsOutput {
    /// <p> An array or endpoint objects. </p>
    #[serde(rename = "Endpoints")]
    pub endpoints: Vec<EndpointSummary>,
    /// <p> If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListHyperParameterTuningJobsRequest {
    /// <p>A filter that returns only tuning jobs that were created after the specified time.</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only tuning jobs that were created before the specified time.</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A filter that returns only tuning jobs that were modified after the specified time.</p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p>A filter that returns only tuning jobs that were modified before the specified time.</p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of tuning jobs to return. The default value is 10.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the tuning job name. This filter returns only tuning jobs whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of the previous <code>ListHyperParameterTuningJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of tuning jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>Name</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p>A filter that returns only tuning jobs with the specified status.</p>
    #[serde(rename = "StatusEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_equals: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListHyperParameterTuningJobsResponse {
    /// <p>A list of <a>HyperParameterTuningJobSummary</a> objects that describe the tuning jobs that the <code>ListHyperParameterTuningJobs</code> request returned.</p>
    #[serde(rename = "HyperParameterTuningJobSummaries")]
    pub hyper_parameter_tuning_job_summaries: Vec<HyperParameterTuningJobSummary>,
    /// <p>If the result of this <code>ListHyperParameterTuningJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of tuning jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListLabelingJobsForWorkteamRequest {
    /// <p>A filter that returns only labeling jobs created after the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only labeling jobs created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A filter the limits jobs to only the ones whose job reference code contains the specified string.</p>
    #[serde(rename = "JobReferenceCodeContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub job_reference_code_contains: Option<String>,
    /// <p>The maximum number of labeling jobs to return in each page of the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the result of the previous <code>ListLabelingJobsForWorkteam</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of labeling jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p>The Amazon Resource Name (ARN) of the work team for which you want to see labeling jobs for.</p>
    #[serde(rename = "WorkteamArn")]
    pub workteam_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListLabelingJobsForWorkteamResponse {
    /// <p>An array of <code>LabelingJobSummary</code> objects, each describing a labeling job.</p>
    #[serde(rename = "LabelingJobSummaryList")]
    pub labeling_job_summary_list: Vec<LabelingJobForWorkteamSummary>,
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListLabelingJobsRequest {
    /// <p>A filter that returns only labeling jobs created after the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only labeling jobs created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A filter that returns only labeling jobs modified after the specified time (timestamp).</p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p>A filter that returns only labeling jobs modified before the specified time (timestamp).</p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of labeling jobs to return in each page of the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the labeling job name. This filter returns only labeling jobs whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of the previous <code>ListLabelingJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of labeling jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p>A filter that retrieves only labeling jobs with a specific status.</p>
    #[serde(rename = "StatusEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_equals: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListLabelingJobsResponse {
    /// <p>An array of <code>LabelingJobSummary</code> objects, each describing a labeling job.</p>
    #[serde(rename = "LabelingJobSummaryList")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_summary_list: Option<Vec<LabelingJobSummary>>,
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of labeling jobs, use it in the subsequent request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListModelPackagesInput {
    /// <p>A filter that returns only model packages created after the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only model packages created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>The maximum number of model packages to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the model package name. This filter returns only model packages whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the response to a previous <code>ListModelPackages</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of model packages, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The parameter by which to sort the results. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for the results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListModelPackagesOutput {
    /// <p>An array of <code>ModelPackageSummary</code> objects, each of which lists a model package.</p>
    #[serde(rename = "ModelPackageSummaryList")]
    pub model_package_summary_list: Vec<ModelPackageSummary>,
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of model packages, use it in the subsequent request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListModelsInput {
    /// <p>A filter that returns only models with a creation time greater than or equal to the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only models created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>The maximum number of models to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the training job name. This filter returns only models in the training job whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the response to a previous <code>ListModels</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of models, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>Sorts the list of results. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Descending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListModelsOutput {
    /// <p>An array of <code>ModelSummary</code> objects, each of which lists a model.</p>
    #[serde(rename = "Models")]
    pub models: Vec<ModelSummary>,
    /// <p> If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of models, use it in the subsequent request. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListNotebookInstanceLifecycleConfigsInput {
    /// <p>A filter that returns only lifecycle configurations that were created after the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only lifecycle configurations that were created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A filter that returns only lifecycle configurations that were modified after the specified time (timestamp).</p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p>A filter that returns only lifecycle configurations that were modified before the specified time (timestamp).</p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of lifecycle configurations to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the lifecycle configuration name. This filter returns only lifecycle configurations whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of a <code>ListNotebookInstanceLifecycleConfigs</code> request was truncated, the response includes a <code>NextToken</code>. To get the next set of lifecycle configurations, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>Sorts the list of results. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListNotebookInstanceLifecycleConfigsOutput {
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To get the next set of lifecycle configurations, use it in the next request. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of <code>NotebookInstanceLifecycleConfiguration</code> objects, each listing a lifecycle configuration.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigs")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_lifecycle_configs: Option<Vec<NotebookInstanceLifecycleConfigSummary>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListNotebookInstancesInput {
    /// <p>A filter that returns only notebook instances with associated with the specified git repository.</p>
    #[serde(rename = "AdditionalCodeRepositoryEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub additional_code_repository_equals: Option<String>,
    /// <p>A filter that returns only notebook instances that were created after the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only notebook instances that were created before the specified time (timestamp). </p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A string in the name or URL of a Git repository associated with this notebook instance. This filter returns only notebook instances associated with a git repository with a name that contains the specified string.</p>
    #[serde(rename = "DefaultCodeRepositoryContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub default_code_repository_contains: Option<String>,
    /// <p>A filter that returns only notebook instances that were modified after the specified time (timestamp).</p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p>A filter that returns only notebook instances that were modified before the specified time (timestamp).</p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of notebook instances to return.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the notebook instances' name. This filter returns only notebook instances whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p><p> If the previous call to the <code>ListNotebookInstances</code> is truncated, the response includes a <code>NextToken</code>. You can use this token in your subsequent <code>ListNotebookInstances</code> request to fetch the next set of notebook instances. </p> <note> <p>You might specify a filter or a sort order in your request. When response is truncated, you must use the same values for the filer and sort order in the next request. </p> </note></p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>A string in the name of a notebook instances lifecycle configuration associated with this notebook instance. This filter returns only notebook instances associated with a lifecycle configuration with a name that contains the specified string.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigNameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_lifecycle_config_name_contains: Option<String>,
    /// <p>The field to sort results by. The default is <code>Name</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. </p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p>A filter that returns only notebook instances with the specified status.</p>
    #[serde(rename = "StatusEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_equals: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListNotebookInstancesOutput {
    /// <p>If the response to the previous <code>ListNotebookInstances</code> request was truncated, Amazon SageMaker returns this token. To retrieve the next set of notebook instances, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of <code>NotebookInstanceSummary</code> objects, one for each notebook instance.</p>
    #[serde(rename = "NotebookInstances")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instances: Option<Vec<NotebookInstanceSummary>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListSubscribedWorkteamsRequest {
    /// <p>The maximum number of work teams to return in each page of the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the work team name. This filter returns only work teams whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of the previous <code>ListSubscribedWorkteams</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of labeling jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListSubscribedWorkteamsResponse {
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of <code>Workteam</code> objects, each describing a work team.</p>
    #[serde(rename = "SubscribedWorkteams")]
    pub subscribed_workteams: Vec<SubscribedWorkteam>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListTagsInput {
    /// <p>Maximum number of tags to return.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p> If the response to the previous <code>ListTags</code> request is truncated, Amazon SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.</p>
    #[serde(rename = "ResourceArn")]
    pub resource_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListTagsOutput {
    /// <p> If response is truncated, Amazon SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of <code>Tag</code> objects, each with a tag key and a value.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListTrainingJobsForHyperParameterTuningJobRequest {
    /// <p>The name of the tuning job whose training jobs you want to list.</p>
    #[serde(rename = "HyperParameterTuningJobName")]
    pub hyper_parameter_tuning_job_name: String,
    /// <p>The maximum number of training jobs to return. The default value is 10.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If the result of the previous <code>ListTrainingJobsForHyperParameterTuningJob</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>Name</code>.</p> <p>If the value of this field is <code>FinalObjectiveMetricValue</code>, any training jobs that did not return an objective metric are not listed.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p>A filter that returns only training jobs with the specified status.</p>
    #[serde(rename = "StatusEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_equals: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListTrainingJobsForHyperParameterTuningJobResponse {
    /// <p>If the result of this <code>ListTrainingJobsForHyperParameterTuningJob</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>A list of <a>TrainingJobSummary</a> objects that describe the training jobs that the <code>ListTrainingJobsForHyperParameterTuningJob</code> request returned.</p>
    #[serde(rename = "TrainingJobSummaries")]
    pub training_job_summaries: Vec<HyperParameterTrainingJobSummary>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListTrainingJobsRequest {
    /// <p>A filter that returns only training jobs created after the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only training jobs created before the specified time (timestamp).</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A filter that returns only training jobs modified after the specified time (timestamp).</p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p>A filter that returns only training jobs modified before the specified time (timestamp).</p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of training jobs to return in the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the training job name. This filter returns only training jobs whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of the previous <code>ListTrainingJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request. </p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p>A filter that retrieves only training jobs with a specific status.</p>
    #[serde(rename = "StatusEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_equals: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListTrainingJobsResponse {
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of <code>TrainingJobSummary</code> objects, each listing a training job.</p>
    #[serde(rename = "TrainingJobSummaries")]
    pub training_job_summaries: Vec<TrainingJobSummary>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListTransformJobsRequest {
    /// <p>A filter that returns only transform jobs created after the specified time.</p>
    #[serde(rename = "CreationTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_after: Option<f64>,
    /// <p>A filter that returns only transform jobs created before the specified time.</p>
    #[serde(rename = "CreationTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time_before: Option<f64>,
    /// <p>A filter that returns only transform jobs modified after the specified time.</p>
    #[serde(rename = "LastModifiedTimeAfter")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_after: Option<f64>,
    /// <p>A filter that returns only transform jobs modified before the specified time.</p>
    #[serde(rename = "LastModifiedTimeBefore")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time_before: Option<f64>,
    /// <p>The maximum number of transform jobs to return in the response. The default value is <code>10</code>.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the transform job name. This filter returns only transform jobs whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of the previous <code>ListTransformJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of transform jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Descending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
    /// <p>A filter that retrieves only transform jobs with a specific status.</p>
    #[serde(rename = "StatusEquals")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_equals: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListTransformJobsResponse {
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of transform jobs, use it in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of <code>TransformJobSummary</code> objects.</p>
    #[serde(rename = "TransformJobSummaries")]
    pub transform_job_summaries: Vec<TransformJobSummary>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct ListWorkteamsRequest {
    /// <p>The maximum number of work teams to return in each page of the response.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>A string in the work team's name. This filter returns only work teams whose name contains the specified string.</p>
    #[serde(rename = "NameContains")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub name_contains: Option<String>,
    /// <p>If the result of the previous <code>ListWorkteams</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of labeling jobs, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The field to sort results by. The default is <code>CreationTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>The sort order for results. The default is <code>Ascending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ListWorkteamsResponse {
    /// <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>An array of <code>Workteam</code> objects, each describing a work team.</p>
    #[serde(rename = "Workteams")]
    pub workteams: Vec<Workteam>,
}

/// <p>Defines the Amazon Cognito user group that is part of a work team.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct MemberDefinition {
    /// <p>The Amazon Cognito user group that is part of the work team.</p>
    #[serde(rename = "CognitoMemberDefinition")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub cognito_member_definition: Option<CognitoMemberDefinition>,
}

/// <p>The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct MetricData {
    /// <p>The name of the metric.</p>
    #[serde(rename = "MetricName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub metric_name: Option<String>,
    /// <p>The date and time that the algorithm emitted the metric.</p>
    #[serde(rename = "Timestamp")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub timestamp: Option<f64>,
    /// <p>The value of the metric.</p>
    #[serde(rename = "Value")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub value: Option<f32>,
}

/// <p>Specifies a metric that the training algorithm writes to <code>stderr</code> or <code>stdout</code>. Amazon SageMakerhyperparameter tuning captures all defined metrics. You specify one metric that a hyperparameter tuning job uses as its objective metric to choose the best training job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct MetricDefinition {
    /// <p>The name of the metric.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p>A regular expression that searches the output of a training job and gets the value of the metric. For more information about using regular expressions to define metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-metrics.html">Defining Objective Metrics</a>.</p>
    #[serde(rename = "Regex")]
    pub regex: String,
}

/// <p>Provides information about the location that is configured for storing model artifacts. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ModelArtifacts {
    /// <p>The path of the S3 object that contains the model artifacts. For example, <code>s3://bucket-name/keynameprefix/model.tar.gz</code>.</p>
    #[serde(rename = "S3ModelArtifacts")]
    pub s3_model_artifacts: String,
}

/// <p>Describes the Docker container for the model package.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ModelPackageContainerDefinition {
    /// <p>The DNS host name for the Docker container.</p>
    #[serde(rename = "ContainerHostname")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub container_hostname: Option<String>,
    /// <p>The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.</p> <p>If you are using your own custom algorithm instead of an algorithm provided by Amazon SageMaker, the inference code must meet Amazon SageMaker requirements. Amazon SageMaker supports both <code>registry/repository[:tag]</code> and <code>registry/repository[@digest]</code> image path formats. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>.</p>
    #[serde(rename = "Image")]
    pub image: String,
    /// <p>An MD5 hash of the training algorithm that identifies the Docker image used for training.</p>
    #[serde(rename = "ImageDigest")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub image_digest: Option<String>,
    /// <p>The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single <code>gzip</code> compressed tar archive (<code>.tar.gz</code> suffix).</p>
    #[serde(rename = "ModelDataUrl")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model_data_url: Option<String>,
    /// <p>The AWS Marketplace product ID of the model package.</p>
    #[serde(rename = "ProductId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub product_id: Option<String>,
}

/// <p>Specifies the validation and image scan statuses of the model package.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ModelPackageStatusDetails {
    /// <p>The status of the scan of the Docker image container for the model package.</p>
    #[serde(rename = "ImageScanStatuses")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub image_scan_statuses: Option<Vec<ModelPackageStatusItem>>,
    /// <p>The validation status of the model package.</p>
    #[serde(rename = "ValidationStatuses")]
    pub validation_statuses: Vec<ModelPackageStatusItem>,
}

/// <p>Represents the overall status of a model package.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ModelPackageStatusItem {
    /// <p>if the overall status is <code>Failed</code>, the reason for the failure.</p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>The name of the model package for which the overall status is being reported.</p>
    #[serde(rename = "Name")]
    pub name: String,
    /// <p>The current status.</p>
    #[serde(rename = "Status")]
    pub status: String,
}

/// <p>Provides summary information about a model package.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ModelPackageSummary {
    /// <p>A timestamp that shows when the model package was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The Amazon Resource Name (ARN) of the model package.</p>
    #[serde(rename = "ModelPackageArn")]
    pub model_package_arn: String,
    /// <p>A brief description of the model package.</p>
    #[serde(rename = "ModelPackageDescription")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model_package_description: Option<String>,
    /// <p>The name of the model package.</p>
    #[serde(rename = "ModelPackageName")]
    pub model_package_name: String,
    /// <p>The overall status of the model package.</p>
    #[serde(rename = "ModelPackageStatus")]
    pub model_package_status: String,
}

/// <p>Contains data, such as the inputs and targeted instance types that are used in the process of validating the model package.</p> <p>The data provided in the validation profile is made available to your buyers on AWS Marketplace.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ModelPackageValidationProfile {
    /// <p>The name of the profile for the model package.</p>
    #[serde(rename = "ProfileName")]
    pub profile_name: String,
    /// <p>The <code>TransformJobDefinition</code> object that describes the transform job used for the validation of the model package.</p>
    #[serde(rename = "TransformJobDefinition")]
    pub transform_job_definition: TransformJobDefinition,
}

/// <p>Specifies batch transform jobs that Amazon SageMaker runs to validate your model package.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ModelPackageValidationSpecification {
    /// <p>An array of <code>ModelPackageValidationProfile</code> objects, each of which specifies a batch transform job that Amazon SageMaker runs to validate your model package.</p>
    #[serde(rename = "ValidationProfiles")]
    pub validation_profiles: Vec<ModelPackageValidationProfile>,
    /// <p>The IAM roles to be used for the validation of the model package.</p>
    #[serde(rename = "ValidationRole")]
    pub validation_role: String,
}

/// <p>Provides summary information about a model.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ModelSummary {
    /// <p>A timestamp that indicates when the model was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>The Amazon Resource Name (ARN) of the model.</p>
    #[serde(rename = "ModelArn")]
    pub model_arn: String,
    /// <p>The name of the model that you want a summary for.</p>
    #[serde(rename = "ModelName")]
    pub model_name: String,
}

/// <p><p>Defines a list of <code>NestedFilters</code> objects. To satisfy the conditions specified in the <code>NestedFilters</code> call, a resource must satisfy the conditions of all of the filters.</p> <p>For example, you could define a <code>NestedFilters</code> using the training job&#39;s <code>InputDataConfig</code> property to filter on <code>Channel</code> objects. </p> <p>A <code>NestedFilters</code> object contains multiple filters. For example, to find all training jobs whose name contains <code>train</code> and that have <code>cat/data</code> in their <code>S3Uri</code> (specified in <code>InputDataConfig</code>), you need to create a <code>NestedFilters</code> object that specifies the <code>InputDataConfig</code> property with the following <code>Filter</code> objects:</p> <ul> <li> <p> <code>&#39;{Name:&quot;InputDataConfig.ChannelName&quot;, &quot;Operator&quot;:&quot;EQUALS&quot;, &quot;Value&quot;:&quot;train&quot;}&#39;,</code> </p> </li> <li> <p> <code>&#39;{Name:&quot;InputDataConfig.DataSource.S3DataSource.S3Uri&quot;, &quot;Operator&quot;:&quot;CONTAINS&quot;, &quot;Value&quot;:&quot;cat/data&quot;}&#39;</code> </p> </li> </ul></p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct NestedFilters {
    /// <p>A list of filters. Each filter acts on a property. Filters must contain at least one <code>Filters</code> value. For example, a <code>NestedFilters</code> call might include a filter on the <code>PropertyName</code> parameter of the <code>InputDataConfig</code> property: <code>InputDataConfig.DataSource.S3DataSource.S3Uri</code>.</p>
    #[serde(rename = "Filters")]
    pub filters: Vec<Filter>,
    /// <p>The name of the property to use in the nested filters. The value must match a listed property name, such as <code>InputDataConfig</code>.</p>
    #[serde(rename = "NestedPropertyName")]
    pub nested_property_name: String,
}

/// <p>Provides a summary of a notebook instance lifecycle configuration.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct NotebookInstanceLifecycleConfigSummary {
    /// <p>A timestamp that tells when the lifecycle configuration was created.</p>
    #[serde(rename = "CreationTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time: Option<f64>,
    /// <p>A timestamp that tells when the lifecycle configuration was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the lifecycle configuration.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigArn")]
    pub notebook_instance_lifecycle_config_arn: String,
    /// <p>The name of the lifecycle configuration.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigName")]
    pub notebook_instance_lifecycle_config_name: String,
}

/// <p>Contains the notebook instance lifecycle configuration script.</p> <p>Each lifecycle configuration script has a limit of 16384 characters.</p> <p>The value of the <code>$PATH</code> environment variable that is available to both scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p> <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group <code>/aws/sagemaker/NotebookInstances</code> in log stream <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p> <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct NotebookInstanceLifecycleHook {
    /// <p>A base64-encoded string that contains a shell script for a notebook instance lifecycle configuration.</p>
    #[serde(rename = "Content")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub content: Option<String>,
}

/// <p>Provides summary information for an Amazon SageMaker notebook instance.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct NotebookInstanceSummary {
    /// <p>An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p>
    #[serde(rename = "AdditionalCodeRepositories")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub additional_code_repositories: Option<Vec<String>>,
    /// <p>A timestamp that shows when the notebook instance was created.</p>
    #[serde(rename = "CreationTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time: Option<f64>,
    /// <p>The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p>
    #[serde(rename = "DefaultCodeRepository")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub default_code_repository: Option<String>,
    /// <p>The type of ML compute instance that the notebook instance is running on.</p>
    #[serde(rename = "InstanceType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub instance_type: Option<String>,
    /// <p>A timestamp that shows when the notebook instance was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the notebook instance.</p>
    #[serde(rename = "NotebookInstanceArn")]
    pub notebook_instance_arn: String,
    /// <p>The name of a notebook instance lifecycle configuration associated with this notebook instance.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_lifecycle_config_name: Option<String>,
    /// <p>The name of the notebook instance that you want a summary for.</p>
    #[serde(rename = "NotebookInstanceName")]
    pub notebook_instance_name: String,
    /// <p>The status of the notebook instance.</p>
    #[serde(rename = "NotebookInstanceStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notebook_instance_status: Option<String>,
    /// <p>The URL that you use to connect to the Jupyter instance running in your notebook instance. </p>
    #[serde(rename = "Url")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub url: Option<String>,
}

/// <p>Configures SNS notifications of available or expiring work items for work teams.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct NotificationConfiguration {
    /// <p>The ARN for the SNS topic to which notifications should be published.</p>
    #[serde(rename = "NotificationTopicArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_topic_arn: Option<String>,
}

/// <p>Specifies the number of training jobs that this hyperparameter tuning job launched, categorized by the status of their objective metric. The objective metric status shows whether the final objective metric for the training job has been evaluated by the tuning job and used in the hyperparameter tuning process.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ObjectiveStatusCounters {
    /// <p>The number of training jobs whose final objective metric was not evaluated and used in the hyperparameter tuning process. This typically occurs when the training job failed or did not emit an objective metric.</p>
    #[serde(rename = "Failed")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failed: Option<i64>,
    /// <p>The number of training jobs that are in progress and pending evaluation of their final objective metric.</p>
    #[serde(rename = "Pending")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub pending: Option<i64>,
    /// <p>The number of training jobs whose final objective metric was evaluated by the hyperparameter tuning job and used in the hyperparameter tuning process.</p>
    #[serde(rename = "Succeeded")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub succeeded: Option<i64>,
}

/// <p>Contains information about the output location for the compiled model and the device (target) that the model runs on.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct OutputConfig {
    /// <p>Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.</p>
    #[serde(rename = "S3OutputLocation")]
    pub s3_output_location: String,
    /// <p>Identifies the device that you want to run your model on after it has been compiled. For example: ml_c5.</p>
    #[serde(rename = "TargetDevice")]
    pub target_device: String,
}

/// <p>Provides information about how to store model training results (model artifacts).</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct OutputDataConfig {
    /// <p>The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The <code>KmsKeyId</code> can be any of the following formats: </p> <ul> <li> <p>// KMS Key ID</p> <p> <code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// KMS Key Alias</p> <p> <code>"alias/ExampleAlias"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key Alias</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"</code> </p> </li> </ul> <p>If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see <a href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS-Managed Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i> </p> <p>The KMS key policy must grant permission to the IAM role that you specify in your <code>CreateTramsformJob</code> request. For more information, see <a href="http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using Key Policies in AWS KMS</a> in the <i>AWS Key Management Service Developer Guide</i>.</p>
    #[serde(rename = "KmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kms_key_id: Option<String>,
    /// <p>Identifies the S3 path where you want Amazon SageMaker to store the model artifacts. For example, <code>s3://bucket-name/key-name-prefix</code>. </p>
    #[serde(rename = "S3OutputPath")]
    pub s3_output_path: String,
}

/// <p>Defines the possible values for categorical, continuous, and integer hyperparameters to be used by an algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ParameterRange {
    /// <p>A <code>CategoricalParameterRangeSpecification</code> object that defines the possible values for a categorical hyperparameter.</p>
    #[serde(rename = "CategoricalParameterRangeSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub categorical_parameter_range_specification: Option<CategoricalParameterRangeSpecification>,
    /// <p>A <code>ContinuousParameterRangeSpecification</code> object that defines the possible values for a continuous hyperparameter.</p>
    #[serde(rename = "ContinuousParameterRangeSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub continuous_parameter_range_specification: Option<ContinuousParameterRangeSpecification>,
    /// <p>A <code>IntegerParameterRangeSpecification</code> object that defines the possible values for an integer hyperparameter.</p>
    #[serde(rename = "IntegerParameterRangeSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub integer_parameter_range_specification: Option<IntegerParameterRangeSpecification>,
}

/// <p><p>Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.</p> <note> <p>You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.</p> </note></p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ParameterRanges {
    /// <p>The array of <a>CategoricalParameterRange</a> objects that specify ranges of categorical hyperparameters that a hyperparameter tuning job searches.</p>
    #[serde(rename = "CategoricalParameterRanges")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub categorical_parameter_ranges: Option<Vec<CategoricalParameterRange>>,
    /// <p>The array of <a>ContinuousParameterRange</a> objects that specify ranges of continuous hyperparameters that a hyperparameter tuning job searches.</p>
    #[serde(rename = "ContinuousParameterRanges")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub continuous_parameter_ranges: Option<Vec<ContinuousParameterRange>>,
    /// <p>The array of <a>IntegerParameterRange</a> objects that specify ranges of integer hyperparameters that a hyperparameter tuning job searches.</p>
    #[serde(rename = "IntegerParameterRanges")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub integer_parameter_ranges: Option<Vec<IntegerParameterRange>>,
}

/// <p>A previously completed or stopped hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ParentHyperParameterTuningJob {
    /// <p>The name of the hyperparameter tuning job to be used as a starting point for a new hyperparameter tuning job.</p>
    #[serde(rename = "HyperParameterTuningJobName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub hyper_parameter_tuning_job_name: Option<String>,
}

/// <p>Identifies a model that you want to host and the resources to deploy for hosting it. If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying variant weights. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ProductionVariant {
    /// <p>The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>.</p>
    #[serde(rename = "AcceleratorType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub accelerator_type: Option<String>,
    /// <p>Number of instances to launch initially.</p>
    #[serde(rename = "InitialInstanceCount")]
    pub initial_instance_count: i64,
    /// <p>Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the <code>VariantWeight</code> to the sum of all <code>VariantWeight</code> values across all ProductionVariants. If unspecified, it defaults to 1.0. </p>
    #[serde(rename = "InitialVariantWeight")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub initial_variant_weight: Option<f32>,
    /// <p>The ML compute instance type.</p>
    #[serde(rename = "InstanceType")]
    pub instance_type: String,
    /// <p>The name of the model that you want to host. This is the name that you specified when creating the model.</p>
    #[serde(rename = "ModelName")]
    pub model_name: String,
    /// <p>The name of the production variant.</p>
    #[serde(rename = "VariantName")]
    pub variant_name: String,
}

/// <p>Describes weight and capacities for a production variant associated with an endpoint. If you sent a request to the <code>UpdateEndpointWeightsAndCapacities</code> API and the endpoint status is <code>Updating</code>, you get different desired and current values. </p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct ProductionVariantSummary {
    /// <p>The number of instances associated with the variant.</p>
    #[serde(rename = "CurrentInstanceCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub current_instance_count: Option<i64>,
    /// <p>The weight associated with the variant.</p>
    #[serde(rename = "CurrentWeight")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub current_weight: Option<f32>,
    /// <p>An array of <code>DeployedImage</code> objects that specify the Amazon EC2 Container Registry paths of the inference images deployed on instances of this <code>ProductionVariant</code>.</p>
    #[serde(rename = "DeployedImages")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub deployed_images: Option<Vec<DeployedImage>>,
    /// <p>The number of instances requested in the <code>UpdateEndpointWeightsAndCapacities</code> request. </p>
    #[serde(rename = "DesiredInstanceCount")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub desired_instance_count: Option<i64>,
    /// <p>The requested weight, as specified in the <code>UpdateEndpointWeightsAndCapacities</code> request. </p>
    #[serde(rename = "DesiredWeight")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub desired_weight: Option<f32>,
    /// <p>The name of the variant.</p>
    #[serde(rename = "VariantName")]
    pub variant_name: String,
}

/// <p>A type of <code>SuggestionQuery</code>. A suggestion query for retrieving property names that match the specified hint.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct PropertyNameQuery {
    /// <p>Text that is part of a property's name. The property names of hyperparameter, metric, and tag key names that begin with the specified text in the <code>PropertyNameHint</code>.</p>
    #[serde(rename = "PropertyNameHint")]
    pub property_name_hint: String,
}

/// <p>A property name returned from a <code>GetSearchSuggestions</code> call that specifies a value in the <code>PropertyNameQuery</code> field.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct PropertyNameSuggestion {
    /// <p>A suggested property name based on what you entered in the search textbox in the Amazon SageMaker console.</p>
    #[serde(rename = "PropertyName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub property_name: Option<String>,
}

/// <p><p>Defines the amount of money paid to an Amazon Mechanical Turk worker for each task performed. </p> <p>Use one of the following prices for bounding box tasks. Prices are in US dollars.</p> <ul> <li> <p>0.036</p> </li> <li> <p>0.048</p> </li> <li> <p>0.060</p> </li> <li> <p>0.072</p> </li> <li> <p>0.120</p> </li> <li> <p>0.240</p> </li> <li> <p>0.360</p> </li> <li> <p>0.480</p> </li> <li> <p>0.600</p> </li> <li> <p>0.720</p> </li> <li> <p>0.840</p> </li> <li> <p>0.960</p> </li> <li> <p>1.080</p> </li> <li> <p>1.200</p> </li> </ul> <p>Use one of the following prices for image classification, text classification, and custom tasks. Prices are in US dollars.</p> <ul> <li> <p>0.012</p> </li> <li> <p>0.024</p> </li> <li> <p>0.036</p> </li> <li> <p>0.048</p> </li> <li> <p>0.060</p> </li> <li> <p>0.072</p> </li> <li> <p>0.120</p> </li> <li> <p>0.240</p> </li> <li> <p>0.360</p> </li> <li> <p>0.480</p> </li> <li> <p>0.600</p> </li> <li> <p>0.720</p> </li> <li> <p>0.840</p> </li> <li> <p>0.960</p> </li> <li> <p>1.080</p> </li> <li> <p>1.200</p> </li> </ul> <p>Use one of the following prices for semantic segmentation tasks. Prices are in US dollars.</p> <ul> <li> <p>0.840</p> </li> <li> <p>0.960</p> </li> <li> <p>1.080</p> </li> <li> <p>1.200</p> </li> </ul></p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct PublicWorkforceTaskPrice {
    /// <p>Defines the amount of money paid to a worker in United States dollars.</p>
    #[serde(rename = "AmountInUsd")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub amount_in_usd: Option<USD>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct RenderUiTemplateRequest {
    /// <p>The Amazon Resource Name (ARN) that has access to the S3 objects that are used by the template.</p>
    #[serde(rename = "RoleArn")]
    pub role_arn: String,
    /// <p>A <code>RenderableTask</code> object containing a representative task to render.</p>
    #[serde(rename = "Task")]
    pub task: RenderableTask,
    /// <p>A <code>Template</code> object containing the worker UI template to render.</p>
    #[serde(rename = "UiTemplate")]
    pub ui_template: UiTemplate,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct RenderUiTemplateResponse {
    /// <p>A list of one or more <code>RenderingError</code> objects if any were encountered while rendering the template. If there were no errors, the list is empty.</p>
    #[serde(rename = "Errors")]
    pub errors: Vec<RenderingError>,
    /// <p>A Liquid template that renders the HTML for the worker UI.</p>
    #[serde(rename = "RenderedContent")]
    pub rendered_content: String,
}

/// <p>Contains input values for a task.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct RenderableTask {
    /// <p>A JSON object that contains values for the variables defined in the template. It is made available to the template under the substitution variable <code>task.input</code>. For example, if you define a variable <code>task.input.text</code> in your template, you can supply the variable in the JSON object as <code>"text": "sample text"</code>.</p>
    #[serde(rename = "Input")]
    pub input: String,
}

/// <p>A description of an error that occurred while rendering the template.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct RenderingError {
    /// <p>A unique identifier for a specific class of errors.</p>
    #[serde(rename = "Code")]
    pub code: String,
    /// <p>A human-readable message describing the error.</p>
    #[serde(rename = "Message")]
    pub message: String,
}

/// <p>Describes the resources, including ML compute instances and ML storage volumes, to use for model training. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ResourceConfig {
    /// <p>The number of ML compute instances to use. For distributed training, provide a value greater than 1. </p>
    #[serde(rename = "InstanceCount")]
    pub instance_count: i64,
    /// <p>The ML compute instance type. </p>
    #[serde(rename = "InstanceType")]
    pub instance_type: String,
    /// <p><p>The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. The <code>VolumeKmsKeyId</code> can be any of the following formats:</p> <ul> <li> <p>// KMS Key ID</p> <p> <code>&quot;1234abcd-12ab-34cd-56ef-1234567890ab&quot;</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key</p> <p> <code>&quot;arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab&quot;</code> </p> </li> </ul></p>
    #[serde(rename = "VolumeKmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub volume_kms_key_id: Option<String>,
    /// <p><p>The size of the ML storage volume that you want to provision. </p> <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. </p> <p>You must specify sufficient ML storage for your scenario. </p> <note> <p> Amazon SageMaker supports only the General Purpose SSD (gp2) ML storage volume type. </p> </note></p>
    #[serde(rename = "VolumeSizeInGB")]
    pub volume_size_in_gb: i64,
}

/// <p>Specifies the maximum number of training jobs and parallel training jobs that a hyperparameter tuning job can launch.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ResourceLimits {
    /// <p>The maximum number of training jobs that a hyperparameter tuning job can launch.</p>
    #[serde(rename = "MaxNumberOfTrainingJobs")]
    pub max_number_of_training_jobs: i64,
    /// <p>The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.</p>
    #[serde(rename = "MaxParallelTrainingJobs")]
    pub max_parallel_training_jobs: i64,
}

/// <p>Describes the S3 data source.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct S3DataSource {
    /// <p>A list of one or more attribute names to use that are found in a specified augmented manifest file.</p>
    #[serde(rename = "AttributeNames")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub attribute_names: Option<Vec<String>>,
    /// <p>If you want Amazon SageMaker to replicate the entire dataset on each ML compute instance that is launched for model training, specify <code>FullyReplicated</code>. </p> <p>If you want Amazon SageMaker to replicate a subset of data on each ML compute instance that is launched for model training, specify <code>ShardedByS3Key</code>. If there are <i>n</i> ML compute instances launched for a training job, each instance gets approximately 1/<i>n</i> of the number of S3 objects. In this case, model training on each machine uses only the subset of training data. </p> <p>Don't choose more ML compute instances for training than available S3 objects. If you do, some nodes won't get any data and you will pay for nodes that aren't getting any training data. This applies in both File and Pipe modes. Keep this in mind when developing algorithms. </p> <p>In distributed training, where you use multiple ML compute EC2 instances, you might choose <code>ShardedByS3Key</code>. If the algorithm requires copying training data to the ML storage volume (when <code>TrainingInputMode</code> is set to <code>File</code>), this copies 1/<i>n</i> of the number of objects. </p>
    #[serde(rename = "S3DataDistributionType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub s3_data_distribution_type: Option<String>,
    /// <p>If you choose <code>S3Prefix</code>, <code>S3Uri</code> identifies a key name prefix. Amazon SageMaker uses all objects that match the specified key name prefix for model training. </p> <p>If you choose <code>ManifestFile</code>, <code>S3Uri</code> identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for model training. </p> <p>If you choose <code>AugmentedManifestFile</code>, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. <code>AugmentedManifestFile</code> can only be used if the Channel's input mode is <code>Pipe</code>.</p>
    #[serde(rename = "S3DataType")]
    pub s3_data_type: String,
    /// <p><p>Depending on the value specified for the <code>S3DataType</code>, identifies either a key name prefix or a manifest. For example: </p> <ul> <li> <p> A key name prefix might look like this: <code>s3://bucketname/exampleprefix</code>. </p> </li> <li> <p> A manifest might look like this: <code>s3://bucketname/example.manifest</code> </p> <p> The manifest is an S3 object which is a JSON file with the following format: </p> <p> <code>[</code> </p> <p> <code> {&quot;prefix&quot;: &quot;s3://customer<em>bucket/some/prefix/&quot;},</code> </p> <p> <code> &quot;relative/path/to/custdata-1&quot;,</code> </p> <p> <code> &quot;relative/path/custdata-2&quot;,</code> </p> <p> <code> ...</code> </p> <p> <code> ]</code> </p> <p> The preceding JSON matches the following <code>s3Uris</code>: </p> <p> <code>s3://customer</em>bucket/some/prefix/relative/path/to/custdata-1</code> </p> <p> <code>s3://customer_bucket/some/prefix/relative/path/custdata-2</code> </p> <p> <code>...</code> </p> <p>The complete set of <code>s3uris</code> in this manifest is the input data for the channel for this datasource. The object that each <code>s3uris</code> points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf. </p> </li> </ul></p>
    #[serde(rename = "S3Uri")]
    pub s3_uri: String,
}

/// <p><p>A multi-expression that searches for the specified resource or resources in a search. All resource objects that satisfy the expression&#39;s condition are included in the search results. You must specify at least one subexpression, filter, or nested filter. A <code>SearchExpression</code> can contain up to twenty elements.</p> <p>A <code>SearchExpression</code> contains the following components:</p> <ul> <li> <p>A list of <code>Filter</code> objects. Each filter defines a simple Boolean expression comprised of a resource property name, Boolean operator, and value.</p> </li> <li> <p>A list of <code>NestedFilter</code> objects. Each nested filter defines a list of Boolean expressions using a list of resource properties. A nested filter is satisfied if a single object in the list satisfies all Boolean expressions.</p> </li> <li> <p>A list of <code>SearchExpression</code> objects. A search expression object can be nested in a list of search expression objects.</p> </li> <li> <p>A Boolean operator: <code>And</code> or <code>Or</code>.</p> </li> </ul></p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct SearchExpression {
    /// <p>A list of filter objects.</p>
    #[serde(rename = "Filters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub filters: Option<Vec<Filter>>,
    /// <p>A list of nested filter objects.</p>
    #[serde(rename = "NestedFilters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub nested_filters: Option<Vec<NestedFilters>>,
    /// <p>A Boolean operator used to evaluate the search expression. If you want every conditional statement in all lists to be satisfied for the entire search expression to be true, specify <code>And</code>. If only a single conditional statement needs to be true for the entire search expression to be true, specify <code>Or</code>. The default value is <code>And</code>.</p>
    #[serde(rename = "Operator")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub operator: Option<String>,
    /// <p>A list of search expression objects.</p>
    #[serde(rename = "SubExpressions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sub_expressions: Option<Vec<SearchExpression>>,
}

/// <p>An individual search result record that contains a single resource object.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct SearchRecord {
    /// <p>A <code>TrainingJob</code> object that is returned as part of a <code>Search</code> request.</p>
    #[serde(rename = "TrainingJob")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_job: Option<TrainingJob>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct SearchRequest {
    /// <p>The maximum number of results to return in a <code>SearchResponse</code>.</p>
    #[serde(rename = "MaxResults")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_results: Option<i64>,
    /// <p>If more than <code>MaxResults</code> resource objects match the specified <code>SearchExpression</code>, the <code>SearchResponse</code> includes a <code>NextToken</code>. The <code>NextToken</code> can be passed to the next <code>SearchRequest</code> to continue retrieving results for the specified <code>SearchExpression</code> and <code>Sort</code> parameters.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>The name of the Amazon SageMaker resource to search for. Currently, the only valid <code>Resource</code> value is <code>TrainingJob</code>.</p>
    #[serde(rename = "Resource")]
    pub resource: String,
    /// <p>A Boolean conditional statement. Resource objects must satisfy this condition to be included in search results. You must provide at least one subexpression, filter, or nested filter. The maximum number of recursive <code>SubExpressions</code>, <code>NestedFilters</code>, and <code>Filters</code> that can be included in a <code>SearchExpression</code> object is 50.</p>
    #[serde(rename = "SearchExpression")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub search_expression: Option<SearchExpression>,
    /// <p>The name of the resource property used to sort the <code>SearchResults</code>. The default is <code>LastModifiedTime</code>.</p>
    #[serde(rename = "SortBy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_by: Option<String>,
    /// <p>How <code>SearchResults</code> are ordered. Valid values are <code>Ascending</code> or <code>Descending</code>. The default is <code>Descending</code>.</p>
    #[serde(rename = "SortOrder")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sort_order: Option<String>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct SearchResponse {
    /// <p>If the result of the previous <code>Search</code> request was truncated, the response includes a NextToken. To retrieve the next set of results, use the token in the next request.</p>
    #[serde(rename = "NextToken")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub next_token: Option<String>,
    /// <p>A list of <code>SearchResult</code> objects.</p>
    #[serde(rename = "Results")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub results: Option<Vec<SearchRecord>>,
}

/// <p><p>An array element of <a>DescribeTrainingJobResponse$SecondaryStatusTransitions</a>. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, Amazon SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job&#39;s secondary status. </p> <p/></p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct SecondaryStatusTransition {
    /// <p>A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.</p>
    #[serde(rename = "EndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub end_time: Option<f64>,
    /// <p>A timestamp that shows when the training job transitioned to the current secondary status state.</p>
    #[serde(rename = "StartTime")]
    pub start_time: f64,
    /// <p><p>Contains a secondary status information from a training job.</p> <p>Status might be one of the following secondary statuses:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTrainingStack</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul></p>
    #[serde(rename = "Status")]
    pub status: String,
    /// <p><p>A detailed description of the progress within a secondary status. </p> <p>Amazon SageMaker provides secondary statuses and status messages that apply to each of them:</p> <dl> <dt>Starting</dt> <dd> <ul> <li> <p>Starting the training job.</p> </li> <li> <p>Launching requested ML instances.</p> </li> <li> <p>Insufficient capacity error from EC2 while launching instances, retrying!</p> </li> <li> <p>Launched instance was unhealthy, replacing it!</p> </li> <li> <p>Preparing the instances for training.</p> </li> </ul> </dd> <dt>Training</dt> <dd> <ul> <li> <p>Downloading the training image.</p> </li> <li> <p>Training image download completed. Training in progress.</p> </li> </ul> </dd> </dl> <important> <p>Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don&#39;t use status messages in if statements.</p> </important> <p>To have an overview of your training job&#39;s progress, view <code>TrainingJobStatus</code> and <code>SecondaryStatus</code> in <a>DescribeTrainingJobResponse</a>, and <code>StatusMessage</code> together. For example, at the start of a training job, you might see the following:</p> <ul> <li> <p> <code>TrainingJobStatus</code> - InProgress</p> </li> <li> <p> <code>SecondaryStatus</code> - Training</p> </li> <li> <p> <code>StatusMessage</code> - Downloading the training image</p> </li> </ul></p>
    #[serde(rename = "StatusMessage")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub status_message: Option<String>,
}

/// <p>A configuration for a shuffle option for input data in a channel. If you use <code>S3Prefix</code> for <code>S3DataType</code>, the results of the S3 key prefix matches are shuffled. If you use <code>ManifestFile</code>, the order of the S3 object references in the <code>ManifestFile</code> is shuffled. If you use <code>AugmentedManifestFile</code>, the order of the JSON lines in the <code>AugmentedManifestFile</code> is shuffled. The shuffling order is determined using the <code>Seed</code> value.</p> <p>For Pipe input mode, shuffling is done at the start of every epoch. With large datasets, this ensures that the order of the training data is different for each epoch, and it helps reduce bias and possible overfitting. In a multi-node training job when <code>ShuffleConfig</code> is combined with <code>S3DataDistributionType</code> of <code>ShardedByS3Key</code>, the data is shuffled across nodes so that the content sent to a particular node on the first epoch might be sent to a different node on the second epoch.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct ShuffleConfig {
    /// <p>Determines the shuffling order in <code>ShuffleConfig</code> value.</p>
    #[serde(rename = "Seed")]
    pub seed: i64,
}

/// <p>Specifies an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct SourceAlgorithm {
    /// <p>The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your Amazon SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.</p>
    #[serde(rename = "AlgorithmName")]
    pub algorithm_name: String,
    /// <p>The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single <code>gzip</code> compressed tar archive (<code>.tar.gz</code> suffix).</p>
    #[serde(rename = "ModelDataUrl")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model_data_url: Option<String>,
}

/// <p>A list of algorithms that were used to create a model package.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct SourceAlgorithmSpecification {
    /// <p>A list of the algorithms that were used to create a model package.</p>
    #[serde(rename = "SourceAlgorithms")]
    pub source_algorithms: Vec<SourceAlgorithm>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StartNotebookInstanceInput {
    /// <p>The name of the notebook instance to start.</p>
    #[serde(rename = "NotebookInstanceName")]
    pub notebook_instance_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StopCompilationJobRequest {
    /// <p>The name of the model compilation job to stop.</p>
    #[serde(rename = "CompilationJobName")]
    pub compilation_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StopHyperParameterTuningJobRequest {
    /// <p>The name of the tuning job to stop.</p>
    #[serde(rename = "HyperParameterTuningJobName")]
    pub hyper_parameter_tuning_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StopLabelingJobRequest {
    /// <p>The name of the labeling job to stop.</p>
    #[serde(rename = "LabelingJobName")]
    pub labeling_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StopNotebookInstanceInput {
    /// <p>The name of the notebook instance to terminate.</p>
    #[serde(rename = "NotebookInstanceName")]
    pub notebook_instance_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StopTrainingJobRequest {
    /// <p>The name of the training job to stop.</p>
    #[serde(rename = "TrainingJobName")]
    pub training_job_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct StopTransformJobRequest {
    /// <p>The name of the transform job to stop.</p>
    #[serde(rename = "TransformJobName")]
    pub transform_job_name: String,
}

/// <p>Specifies how long model training can run. When model training reaches the limit, Amazon SageMaker ends the training job. Use this API to cap model training cost.</p> <p>To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of training is not lost. </p> <p>Training algorithms provided by Amazon SageMaker automatically saves the intermediate results of a model training job (it is best effort case, as model might not be ready to save as some stages, for example training just started). This intermediate data is a valid model artifact. You can use it to create a model (<code>CreateModel</code>). </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct StoppingCondition {
    /// <p>The maximum length of time, in seconds, that the training job can run. If model training does not complete during this time, Amazon SageMaker ends the job. If value is not specified, default value is 1 day. Maximum value is 28 days.</p>
    #[serde(rename = "MaxRuntimeInSeconds")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_runtime_in_seconds: Option<i64>,
}

/// <p>Describes a work team of a vendor that does the a labelling job.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct SubscribedWorkteam {
    /// <p><p/></p>
    #[serde(rename = "ListingId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub listing_id: Option<String>,
    /// <p>The description of the vendor from the Amazon Marketplace.</p>
    #[serde(rename = "MarketplaceDescription")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub marketplace_description: Option<String>,
    /// <p>The title of the service provided by the vendor in the Amazon Marketplace.</p>
    #[serde(rename = "MarketplaceTitle")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub marketplace_title: Option<String>,
    /// <p>The name of the vendor in the Amazon Marketplace.</p>
    #[serde(rename = "SellerName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub seller_name: Option<String>,
    /// <p>The Amazon Resource Name (ARN) of the vendor that you have subscribed.</p>
    #[serde(rename = "WorkteamArn")]
    pub workteam_arn: String,
}

/// <p>Limits the property names that are included in the response.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct SuggestionQuery {
    /// <p>A type of <code>SuggestionQuery</code>. Defines a property name hint. Only property names that match the specified hint are included in the response.</p>
    #[serde(rename = "PropertyNameQuery")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub property_name_query: Option<PropertyNameQuery>,
}

/// <p>Describes a tag. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct Tag {
    /// <p>The tag key.</p>
    #[serde(rename = "Key")]
    pub key: String,
    /// <p>The tag value.</p>
    #[serde(rename = "Value")]
    pub value: String,
}

/// <p>Contains information about a training job.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct TrainingJob {
    /// <p>Information about the algorithm used for training, and algorithm metadata.</p>
    #[serde(rename = "AlgorithmSpecification")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub algorithm_specification: Option<AlgorithmSpecification>,
    /// <p>A timestamp that indicates when the training job was created.</p>
    #[serde(rename = "CreationTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub creation_time: Option<f64>,
    /// <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.</p>
    #[serde(rename = "EnableInterContainerTrafficEncryption")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_inter_container_traffic_encryption: Option<bool>,
    /// <p>If the <code>TrainingJob</code> was created with network isolation, the value is set to <code>true</code>. If network isolation is enabled, nodes can't communicate beyond the VPC they run in.</p>
    #[serde(rename = "EnableNetworkIsolation")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub enable_network_isolation: Option<bool>,
    /// <p>If the training job failed, the reason it failed.</p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>A list of final metric values that are set when the training job completes. Used only if the training job was configured to use metrics.</p>
    #[serde(rename = "FinalMetricDataList")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub final_metric_data_list: Option<Vec<MetricData>>,
    /// <p>Algorithm-specific parameters.</p>
    #[serde(rename = "HyperParameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub hyper_parameters: Option<::std::collections::HashMap<String, String>>,
    /// <p>An array of <code>Channel</code> objects that describes each data input channel.</p>
    #[serde(rename = "InputDataConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input_data_config: Option<Vec<Channel>>,
    /// <p>The Amazon Resource Name (ARN) of the labeling job.</p>
    #[serde(rename = "LabelingJobArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub labeling_job_arn: Option<String>,
    /// <p>A timestamp that indicates when the status of the training job was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>Information about the Amazon S3 location that is configured for storing model artifacts.</p>
    #[serde(rename = "ModelArtifacts")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub model_artifacts: Option<ModelArtifacts>,
    /// <p>The S3 path where model artifacts that you configured when creating the job are stored. Amazon SageMaker creates subfolders for model artifacts.</p>
    #[serde(rename = "OutputDataConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub output_data_config: Option<OutputDataConfig>,
    /// <p>Resources, including ML compute instances and ML storage volumes, that are configured for model training.</p>
    #[serde(rename = "ResourceConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub resource_config: Option<ResourceConfig>,
    /// <p>The AWS Identity and Access Management (IAM) role configured for the training job.</p>
    #[serde(rename = "RoleArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub role_arn: Option<String>,
    /// <p><p> Provides detailed information about the state of the training job. For detailed information about the secondary status of the training job, see <code>StatusMessage</code> under <a>SecondaryStatusTransition</a>.</p> <p>Amazon SageMaker provides primary statuses and secondary statuses that apply to each of them:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <important> <p>Valid values for <code>SecondaryStatus</code> are subject to change. </p> </important> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTrainingStack</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul></p>
    #[serde(rename = "SecondaryStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub secondary_status: Option<String>,
    /// <p>A history of all of the secondary statuses that the training job has transitioned through.</p>
    #[serde(rename = "SecondaryStatusTransitions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub secondary_status_transitions: Option<Vec<SecondaryStatusTransition>>,
    /// <p>The condition under which to stop the training job.</p>
    #[serde(rename = "StoppingCondition")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stopping_condition: Option<StoppingCondition>,
    /// <p>An array of key-value pairs. For more information, see <a href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User Guide</i>.</p>
    #[serde(rename = "Tags")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tags: Option<Vec<Tag>>,
    /// <p>Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of <code>TrainingStartTime</code> and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when Amazon SageMaker detects a job failure.</p>
    #[serde(rename = "TrainingEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the training job.</p>
    #[serde(rename = "TrainingJobArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_job_arn: Option<String>,
    /// <p>The name of the training job.</p>
    #[serde(rename = "TrainingJobName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_job_name: Option<String>,
    /// <p>The status of the training job.</p> <p>Training job statuses are:</p> <ul> <li> <p> <code>InProgress</code> - The training is in progress.</p> </li> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> <li> <p> <code>Failed</code> - The training job has failed. To see the reason for the failure, see the <code>FailureReason</code> field in the response to a <code>DescribeTrainingJobResponse</code> call.</p> </li> <li> <p> <code>Stopping</code> - The training job is stopping.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> <p>For more detailed information, see <code>SecondaryStatus</code>. </p>
    #[serde(rename = "TrainingJobStatus")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_job_status: Option<String>,
    /// <p>Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of <code>TrainingEndTime</code>. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.</p>
    #[serde(rename = "TrainingStartTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_start_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.</p>
    #[serde(rename = "TuningJobArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tuning_job_arn: Option<String>,
    /// <p>A <a>VpcConfig</a> object that specifies the VPC that this training job has access to. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
    #[serde(rename = "VpcConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub vpc_config: Option<VpcConfig>,
}

/// <p>Defines the input needed to run a training job using the algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct TrainingJobDefinition {
    /// <p>The hyperparameters used for the training job.</p>
    #[serde(rename = "HyperParameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub hyper_parameters: Option<::std::collections::HashMap<String, String>>,
    /// <p>An array of <code>Channel</code> objects, each of which specifies an input source.</p>
    #[serde(rename = "InputDataConfig")]
    pub input_data_config: Vec<Channel>,
    /// <p>the path to the S3 bucket where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.</p>
    #[serde(rename = "OutputDataConfig")]
    pub output_data_config: OutputDataConfig,
    /// <p>The resources, including the ML compute instances and ML storage volumes, to use for model training.</p>
    #[serde(rename = "ResourceConfig")]
    pub resource_config: ResourceConfig,
    /// <p>Sets a duration for training. Use this parameter to cap model training costs.</p> <p>To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts.</p>
    #[serde(rename = "StoppingCondition")]
    pub stopping_condition: StoppingCondition,
    /// <p>The input mode used by the algorithm for the training job. For the input modes that Amazon SageMaker algorithms support, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.</p> <p>If an algorithm supports the <code>File</code> input mode, Amazon SageMaker downloads the training data from S3 to the provisioned ML storage Volume, and mounts the directory to docker volume for training container. If an algorithm supports the <code>Pipe</code> input mode, Amazon SageMaker streams data directly from S3 to the container.</p>
    #[serde(rename = "TrainingInputMode")]
    pub training_input_mode: String,
}

/// <p>The numbers of training jobs launched by a hyperparameter tuning job, categorized by status.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct TrainingJobStatusCounters {
    /// <p>The number of completed training jobs launched by the hyperparameter tuning job.</p>
    #[serde(rename = "Completed")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub completed: Option<i64>,
    /// <p>The number of in-progress training jobs launched by a hyperparameter tuning job.</p>
    #[serde(rename = "InProgress")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub in_progress: Option<i64>,
    /// <p>The number of training jobs that failed and can't be retried. A failed training job can't be retried if it failed because a client error occurred.</p>
    #[serde(rename = "NonRetryableError")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub non_retryable_error: Option<i64>,
    /// <p>The number of training jobs that failed, but can be retried. A failed training job can be retried only if it failed because an internal service error occurred.</p>
    #[serde(rename = "RetryableError")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub retryable_error: Option<i64>,
    /// <p>The number of training jobs launched by a hyperparameter tuning job that were manually stopped.</p>
    #[serde(rename = "Stopped")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stopped: Option<i64>,
}

/// <p>Provides summary information about a training job.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct TrainingJobSummary {
    /// <p>A timestamp that shows when the training job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p> Timestamp when the training job was last modified. </p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses (<code>Completed</code>, <code>Failed</code>, or <code>Stopped</code>). </p>
    #[serde(rename = "TrainingEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the training job.</p>
    #[serde(rename = "TrainingJobArn")]
    pub training_job_arn: String,
    /// <p>The name of the training job that you want a summary for.</p>
    #[serde(rename = "TrainingJobName")]
    pub training_job_name: String,
    /// <p>The status of the training job.</p>
    #[serde(rename = "TrainingJobStatus")]
    pub training_job_status: String,
}

/// <p>Defines how the algorithm is used for a training job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct TrainingSpecification {
    /// <p>A list of <code>MetricDefinition</code> objects, which are used for parsing metrics generated by the algorithm.</p>
    #[serde(rename = "MetricDefinitions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub metric_definitions: Option<Vec<MetricDefinition>>,
    /// <p>A list of the <code>HyperParameterSpecification</code> objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.&gt;</p>
    #[serde(rename = "SupportedHyperParameters")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub supported_hyper_parameters: Option<Vec<HyperParameterSpecification>>,
    /// <p>A list of the instance types that this algorithm can use for training.</p>
    #[serde(rename = "SupportedTrainingInstanceTypes")]
    pub supported_training_instance_types: Vec<String>,
    /// <p>A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.</p>
    #[serde(rename = "SupportedTuningJobObjectiveMetrics")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub supported_tuning_job_objective_metrics: Option<Vec<HyperParameterTuningJobObjective>>,
    /// <p>Indicates whether the algorithm supports distributed training. If set to false, buyers can’t request more than one instance during training.</p>
    #[serde(rename = "SupportsDistributedTraining")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub supports_distributed_training: Option<bool>,
    /// <p>A list of <code>ChannelSpecification</code> objects, which specify the input sources to be used by the algorithm.</p>
    #[serde(rename = "TrainingChannels")]
    pub training_channels: Vec<ChannelSpecification>,
    /// <p>The Amazon ECR registry path of the Docker image that contains the training algorithm.</p>
    #[serde(rename = "TrainingImage")]
    pub training_image: String,
    /// <p>An MD5 hash of the training algorithm that identifies the Docker image used for training.</p>
    #[serde(rename = "TrainingImageDigest")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub training_image_digest: Option<String>,
}

/// <p>Describes the location of the channel data.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct TransformDataSource {
    /// <p>The S3 location of the data source that is associated with a channel.</p>
    #[serde(rename = "S3DataSource")]
    pub s3_data_source: TransformS3DataSource,
}

/// <p>Describes the input source of a transform job and the way the transform job consumes it.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct TransformInput {
    /// <p>If your transform data is compressed, specify the compression type. Amazon SageMaker automatically decompresses the data for the transform job accordingly. The default value is <code>None</code>.</p>
    #[serde(rename = "CompressionType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub compression_type: Option<String>,
    /// <p>The multipurpose internet mail extension (MIME) type of the data. Amazon SageMaker uses the MIME type with each http call to transfer data to the transform job.</p>
    #[serde(rename = "ContentType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub content_type: Option<String>,
    /// <p>Describes the location of the channel data, which is, the S3 location of the input data that the model can consume.</p>
    #[serde(rename = "DataSource")]
    pub data_source: TransformDataSource,
    /// <p><p>The method to use to split the transform job&#39;s data files into smaller batches. Splitting is necessary when the total size of each object is too large to fit in a single request. You can also use data splitting to improve performance by processing multiple concurrent mini-batches. The default value for <code>SplitType</code> is <code>None</code>, which indicates that input data files are not split, and request payloads contain the entire contents of an input object. Set the value of this parameter to <code>Line</code> to split records on a newline character boundary. <code>SplitType</code> also supports a number of record-oriented binary data formats.</p> <p>When splitting is enabled, the size of a mini-batch depends on the values of the <code>BatchStrategy</code> and <code>MaxPayloadInMB</code> parameters. When the value of <code>BatchStrategy</code> is <code>MultiRecord</code>, Amazon SageMaker sends the maximum number of records in each request, up to the <code>MaxPayloadInMB</code> limit. If the value of <code>BatchStrategy</code> is <code>SingleRecord</code>, Amazon SageMaker sends individual records in each request.</p> <note> <p>Some data formats represent a record as a binary payload wrapped with extra padding bytes. When splitting is applied to a binary data format, padding is removed if the value of <code>BatchStrategy</code> is set to <code>SingleRecord</code>. Padding is not removed if the value of <code>BatchStrategy</code> is set to <code>MultiRecord</code>.</p> <p>For more information about the RecordIO, see <a href="http://mxnet.io/architecture/note_data_loading.html#data-format">Data Format</a> in the MXNet documentation. For more information about the TFRecord, see <a href="https://www.tensorflow.org/guide/datasets#consuming_tfrecord_data">Consuming TFRecord data</a> in the TensorFlow documentation.</p> </note></p>
    #[serde(rename = "SplitType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub split_type: Option<String>,
}

/// <p>Defines the input needed to run a transform job using the inference specification specified in the algorithm.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct TransformJobDefinition {
    /// <p>A string that determines the number of records included in a single mini-batch.</p> <p> <code>SingleRecord</code> means only one record is used per mini-batch. <code>MultiRecord</code> means a mini-batch is set to contain as many records that can fit within the <code>MaxPayloadInMB</code> limit.</p>
    #[serde(rename = "BatchStrategy")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub batch_strategy: Option<String>,
    /// <p>The environment variables to set in the Docker container. We support up to 16 key and values entries in the map.</p>
    #[serde(rename = "Environment")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub environment: Option<::std::collections::HashMap<String, String>>,
    /// <p>The maximum number of parallel requests that can be sent to each instance in a transform job. The default value is 1.</p>
    #[serde(rename = "MaxConcurrentTransforms")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_concurrent_transforms: Option<i64>,
    /// <p>The maximum payload size allowed, in MB. A payload is the data portion of a record (without metadata).</p>
    #[serde(rename = "MaxPayloadInMB")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_payload_in_mb: Option<i64>,
    /// <p>A description of the input source and the way the transform job consumes it.</p>
    #[serde(rename = "TransformInput")]
    pub transform_input: TransformInput,
    /// <p>Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p>
    #[serde(rename = "TransformOutput")]
    pub transform_output: TransformOutput,
    /// <p>Identifies the ML compute instances for the transform job.</p>
    #[serde(rename = "TransformResources")]
    pub transform_resources: TransformResources,
}

/// <p>Provides a summary of a transform job. Multiple <code>TransformJobSummary</code> objects are returned as a list after in response to a <a>ListTransformJobs</a> call.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct TransformJobSummary {
    /// <p>A timestamp that shows when the transform Job was created.</p>
    #[serde(rename = "CreationTime")]
    pub creation_time: f64,
    /// <p>If the transform job failed, the reason it failed.</p>
    #[serde(rename = "FailureReason")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub failure_reason: Option<String>,
    /// <p>Indicates when the transform job was last modified.</p>
    #[serde(rename = "LastModifiedTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_modified_time: Option<f64>,
    /// <p>Indicates when the transform job ends on compute instances. For successful jobs and stopped jobs, this is the exact time recorded after the results are uploaded. For failed jobs, this is when Amazon SageMaker detected that the job failed.</p>
    #[serde(rename = "TransformEndTime")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub transform_end_time: Option<f64>,
    /// <p>The Amazon Resource Name (ARN) of the transform job.</p>
    #[serde(rename = "TransformJobArn")]
    pub transform_job_arn: String,
    /// <p>The name of the transform job.</p>
    #[serde(rename = "TransformJobName")]
    pub transform_job_name: String,
    /// <p>The status of the transform job.</p>
    #[serde(rename = "TransformJobStatus")]
    pub transform_job_status: String,
}

/// <p>Describes the results of a transform job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct TransformOutput {
    /// <p>The MIME type used to specify the output data. Amazon SageMaker uses the MIME type with each http call to transfer data from the transform job.</p>
    #[serde(rename = "Accept")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub accept: Option<String>,
    /// <p>Defines how to assemble the results of the transform job as a single S3 object. Choose a format that is most convenient to you. To concatenate the results in binary format, specify <code>None</code>. To add a newline character at the end of every transformed record, specify <code>Line</code>.</p>
    #[serde(rename = "AssembleWith")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub assemble_with: Option<String>,
    /// <p>The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption. The <code>KmsKeyId</code> can be any of the following formats: </p> <ul> <li> <p>// KMS Key ID</p> <p> <code>"1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"</code> </p> </li> <li> <p>// KMS Key Alias</p> <p> <code>"alias/ExampleAlias"</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key Alias</p> <p> <code>"arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"</code> </p> </li> </ul> <p>If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see <a href="https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html">KMS-Managed Encryption Keys</a> in the <i>Amazon Simple Storage Service Developer Guide.</i> </p> <p>The KMS key policy must grant permission to the IAM role that you specify in your <code>CreateTramsformJob</code> request. For more information, see <a href="http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html">Using Key Policies in AWS KMS</a> in the <i>AWS Key Management Service Developer Guide</i>.</p>
    #[serde(rename = "KmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub kms_key_id: Option<String>,
    /// <p>The Amazon S3 path where you want Amazon SageMaker to store the results of the transform job. For example, <code>s3://bucket-name/key-name-prefix</code>.</p> <p>For every S3 object used as input for the transform job, batch transform stores the transformed data with an .<code>out</code> suffix in a corresponding subfolder in the location in the output prefix. For example, for the input data stored at <code>s3://bucket-name/input-name-prefix/dataset01/data.csv</code>, batch transform stores the transformed data at <code>s3://bucket-name/output-name-prefix/input-name-prefix/data.csv.out</code>. Batch transform doesn't upload partially processed objects. For an input S3 object that contains multiple records, it creates an .<code>out</code> file only if the transform job succeeds on the entire file. When the input contains multiple S3 objects, the batch transform job processes the listed S3 objects and uploads only the output for successfully processed objects. If any object fails in the transform job batch transform marks the job as failed to prompt investigation.</p>
    #[serde(rename = "S3OutputPath")]
    pub s3_output_path: String,
}

/// <p>Describes the resources, including ML instance types and ML instance count, to use for transform job.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct TransformResources {
    /// <p>The number of ML compute instances to use in the transform job. For distributed transform, provide a value greater than 1. The default value is <code>1</code>.</p>
    #[serde(rename = "InstanceCount")]
    pub instance_count: i64,
    /// <p>The ML compute instance type for the transform job. For using built-in algorithms to transform moderately sized datasets, ml.m4.xlarge or <code>ml.m5.large</code> should suffice. There is no default value for <code>InstanceType</code>.</p>
    #[serde(rename = "InstanceType")]
    pub instance_type: String,
    /// <p><p>The AWS Key Management Service (AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the batch transform job. The <code>VolumeKmsKeyId</code> can be any of the following formats:</p> <ul> <li> <p>// KMS Key ID</p> <p> <code>&quot;1234abcd-12ab-34cd-56ef-1234567890ab&quot;</code> </p> </li> <li> <p>// Amazon Resource Name (ARN) of a KMS Key</p> <p> <code>&quot;arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab&quot;</code> </p> </li> </ul></p>
    #[serde(rename = "VolumeKmsKeyId")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub volume_kms_key_id: Option<String>,
}

/// <p>Describes the S3 data source.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct TransformS3DataSource {
    /// <p>If you choose <code>S3Prefix</code>, <code>S3Uri</code> identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for batch transform. </p> <p>If you choose <code>ManifestFile</code>, <code>S3Uri</code> identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for batch transform. </p> <p>The following values are compatible: <code>ManifestFile</code>, <code>S3Prefix</code> </p> <p>The following value is not compatible: <code>AugmentedManifestFile</code> </p>
    #[serde(rename = "S3DataType")]
    pub s3_data_type: String,
    /// <p><p>Depending on the value specified for the <code>S3DataType</code>, identifies either a key name prefix or a manifest. For example:</p> <ul> <li> <p> A key name prefix might look like this: <code>s3://bucketname/exampleprefix</code>. </p> </li> <li> <p> A manifest might look like this: <code>s3://bucketname/example.manifest</code> </p> <p> The manifest is an S3 object which is a JSON file with the following format: </p> <p> <code>[</code> </p> <p> <code> {&quot;prefix&quot;: &quot;s3://customer<em>bucket/some/prefix/&quot;},</code> </p> <p> <code> &quot;relative/path/to/custdata-1&quot;,</code> </p> <p> <code> &quot;relative/path/custdata-2&quot;,</code> </p> <p> <code> ...</code> </p> <p> <code> ]</code> </p> <p> The preceding JSON matches the following <code>S3Uris</code>: </p> <p> <code>s3://customer</em>bucket/some/prefix/relative/path/to/custdata-1</code> </p> <p> <code>s3://customer_bucket/some/prefix/relative/path/custdata-1</code> </p> <p> <code>...</code> </p> <p> The complete set of <code>S3Uris</code> in this manifest constitutes the input data for the channel for this datasource. The object that each <code>S3Uris</code> points to must be readable by the IAM role that Amazon SageMaker uses to perform tasks on your behalf.</p> </li> </ul></p>
    #[serde(rename = "S3Uri")]
    pub s3_uri: String,
}

/// <p>Represents an amount of money in United States dollars/</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct USD {
    /// <p>The fractional portion, in cents, of the amount. </p>
    #[serde(rename = "Cents")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub cents: Option<i64>,
    /// <p>The whole number of dollars in the amount.</p>
    #[serde(rename = "Dollars")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub dollars: Option<i64>,
    /// <p>Fractions of a cent, in tenths.</p>
    #[serde(rename = "TenthFractionsOfACent")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub tenth_fractions_of_a_cent: Option<i64>,
}

/// <p>Provided configuration information for the worker UI for a labeling job. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct UiConfig {
    /// <p>The Amazon S3 bucket location of the UI template. For more information about the contents of a UI template, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html"> Creating Your Custom Labeling Task Template</a>.</p>
    #[serde(rename = "UiTemplateS3Uri")]
    pub ui_template_s3_uri: String,
}

/// <p>The Liquid template for the worker user interface.</p>
#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UiTemplate {
    /// <p>The content of the Liquid template for the worker user interface.</p>
    #[serde(rename = "Content")]
    pub content: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateCodeRepositoryInput {
    /// <p>The name of the Git repository to update.</p>
    #[serde(rename = "CodeRepositoryName")]
    pub code_repository_name: String,
    /// <p>The configuration of the git repository, including the URL and the Amazon Resource Name (ARN) of the AWS Secrets Manager secret that contains the credentials used to access the repository. The secret must have a staging label of <code>AWSCURRENT</code> and must be in the following format:</p> <p> <code>{"username": <i>UserName</i>, "password": <i>Password</i>}</code> </p>
    #[serde(rename = "GitConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub git_config: Option<GitConfigForUpdate>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateCodeRepositoryOutput {
    /// <p>The ARN of the Git repository.</p>
    #[serde(rename = "CodeRepositoryArn")]
    pub code_repository_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateEndpointInput {
    /// <p>The name of the new endpoint configuration.</p>
    #[serde(rename = "EndpointConfigName")]
    pub endpoint_config_name: String,
    /// <p>The name of the endpoint whose configuration you want to update.</p>
    #[serde(rename = "EndpointName")]
    pub endpoint_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateEndpointOutput {
    /// <p>The Amazon Resource Name (ARN) of the endpoint.</p>
    #[serde(rename = "EndpointArn")]
    pub endpoint_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateEndpointWeightsAndCapacitiesInput {
    /// <p>An object that provides new capacity and weight values for a variant.</p>
    #[serde(rename = "DesiredWeightsAndCapacities")]
    pub desired_weights_and_capacities: Vec<DesiredWeightAndCapacity>,
    /// <p>The name of an existing Amazon SageMaker endpoint.</p>
    #[serde(rename = "EndpointName")]
    pub endpoint_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateEndpointWeightsAndCapacitiesOutput {
    /// <p>The Amazon Resource Name (ARN) of the updated endpoint.</p>
    #[serde(rename = "EndpointArn")]
    pub endpoint_arn: String,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateNotebookInstanceInput {
    /// <p>A list of the Elastic Inference (EI) instance types to associate with this notebook instance. Currently only one EI instance type can be associated with a notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/ei.html">Using Elastic Inference in Amazon SageMaker</a>.</p>
    #[serde(rename = "AcceleratorTypes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub accelerator_types: Option<Vec<String>>,
    /// <p>An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p>
    #[serde(rename = "AdditionalCodeRepositories")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub additional_code_repositories: Option<Vec<String>>,
    /// <p>The Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html">Associating Git Repositories with Amazon SageMaker Notebook Instances</a>.</p>
    #[serde(rename = "DefaultCodeRepository")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub default_code_repository: Option<String>,
    /// <p>A list of the Elastic Inference (EI) instance types to remove from this notebook instance. This operation is idempotent. If you specify an accelerator type that is not associated with the notebook instance when you call this method, it does not throw an error.</p>
    #[serde(rename = "DisassociateAcceleratorTypes")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub disassociate_accelerator_types: Option<bool>,
    /// <p>A list of names or URLs of the default Git repositories to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.</p>
    #[serde(rename = "DisassociateAdditionalCodeRepositories")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub disassociate_additional_code_repositories: Option<bool>,
    /// <p>The name or URL of the default Git repository to remove from this notebook instance. This operation is idempotent. If you specify a Git repository that is not associated with the notebook instance when you call this method, it does not throw an error.</p>
    #[serde(rename = "DisassociateDefaultCodeRepository")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub disassociate_default_code_repository: Option<bool>,
    /// <p>Set to <code>true</code> to remove the notebook instance lifecycle configuration currently associated with the notebook instance. This operation is idempotent. If you specify a lifecycle configuration that is not associated with the notebook instance when you call this method, it does not throw an error.</p>
    #[serde(rename = "DisassociateLifecycleConfig")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub disassociate_lifecycle_config: Option<bool>,
    /// <p>The Amazon ML compute instance type.</p>
    #[serde(rename = "InstanceType")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub instance_type: Option<String>,
    /// <p>The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
    #[serde(rename = "LifecycleConfigName")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub lifecycle_config_name: Option<String>,
    /// <p>The name of the notebook instance to update.</p>
    #[serde(rename = "NotebookInstanceName")]
    pub notebook_instance_name: String,
    /// <p><p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker can assume to access the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to Amazon SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note></p>
    #[serde(rename = "RoleArn")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub role_arn: Option<String>,
    /// <p><p>Whether root access is enabled or disabled for users of the notebook instance. The default value is <code>Enabled</code>.</p> <note> <p>If you set this to <code>Disabled</code>, users don&#39;t have root access on the notebook instance, but lifecycle configuration scripts still run with root permissions.</p> </note></p>
    #[serde(rename = "RootAccess")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub root_access: Option<String>,
    /// <p>The size, in GB, of the ML storage volume to attach to the notebook instance. The default value is 5 GB.</p>
    #[serde(rename = "VolumeSizeInGB")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub volume_size_in_gb: Option<i64>,
}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateNotebookInstanceLifecycleConfigInput {
    /// <p>The name of the lifecycle configuration.</p>
    #[serde(rename = "NotebookInstanceLifecycleConfigName")]
    pub notebook_instance_lifecycle_config_name: String,
    /// <p>The shell script that runs only once, when you create a notebook instance</p>
    #[serde(rename = "OnCreate")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub on_create: Option<Vec<NotebookInstanceLifecycleHook>>,
    /// <p>The shell script that runs every time you start a notebook instance, including when you create the notebook instance.</p>
    #[serde(rename = "OnStart")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub on_start: Option<Vec<NotebookInstanceLifecycleHook>>,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateNotebookInstanceLifecycleConfigOutput {}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateNotebookInstanceOutput {}

#[derive(Default, Debug, Clone, PartialEq, Serialize)]
pub struct UpdateWorkteamRequest {
    /// <p>An updated description for the work team.</p>
    #[serde(rename = "Description")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub description: Option<String>,
    /// <p>A list of <code>MemberDefinition</code> objects that contain the updated work team members.</p>
    #[serde(rename = "MemberDefinitions")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub member_definitions: Option<Vec<MemberDefinition>>,
    /// <p>Configures SNS topic notifications for available or expiring work items</p>
    #[serde(rename = "NotificationConfiguration")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_configuration: Option<NotificationConfiguration>,
    /// <p>The name of the work team to update.</p>
    #[serde(rename = "WorkteamName")]
    pub workteam_name: String,
}

#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct UpdateWorkteamResponse {
    /// <p>A <code>Workteam</code> object that describes the updated work team.</p>
    #[serde(rename = "Workteam")]
    pub workteam: Workteam,
}

/// <p>Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/host-vpc.html">Protect Endpoints by Using an Amazon Virtual Private Cloud</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>. </p>
#[derive(Default, Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct VpcConfig {
    /// <p>The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in the <code>Subnets</code> field.</p>
    #[serde(rename = "SecurityGroupIds")]
    pub security_group_ids: Vec<String>,
    /// <p><p>The ID of the subnets in the VPC to which you want to connect your training job or model. </p> <note> <p>Amazon EC2 P3 accelerated computing instances are not available in the c/d/e availability zones of region us-east-1. If you want to create endpoints with P3 instances in VPC mode in region us-east-1, create subnets in a/b/f availability zones instead.</p> </note></p>
    #[serde(rename = "Subnets")]
    pub subnets: Vec<String>,
}

/// <p>Provides details about a labeling work team.</p>
#[derive(Default, Debug, Clone, PartialEq, Deserialize)]
#[cfg_attr(test, derive(Serialize))]
pub struct Workteam {
    /// <p>The date and time that the work team was created (timestamp).</p>
    #[serde(rename = "CreateDate")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub create_date: Option<f64>,
    /// <p>A description of the work team.</p>
    #[serde(rename = "Description")]
    pub description: String,
    /// <p>The date and time that the work team was last updated (timestamp).</p>
    #[serde(rename = "LastUpdatedDate")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub last_updated_date: Option<f64>,
    /// <p>The Amazon Cognito user groups that make up the work team.</p>
    #[serde(rename = "MemberDefinitions")]
    pub member_definitions: Vec<MemberDefinition>,
    #[serde(rename = "NotificationConfiguration")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub notification_configuration: Option<NotificationConfiguration>,
    /// <p>The Amazon Marketplace identifier for a vendor's work team.</p>
    #[serde(rename = "ProductListingIds")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub product_listing_ids: Option<Vec<String>>,
    /// <p>The URI of the labeling job's user interface. Workers open this URI to start labeling your data objects.</p>
    #[serde(rename = "SubDomain")]
    #[serde(skip_serializing_if = "Option::is_none")]
    pub sub_domain: Option<String>,
    /// <p>The Amazon Resource Name (ARN) that identifies the work team.</p>
    #[serde(rename = "WorkteamArn")]
    pub workteam_arn: String,
    /// <p>The name of the work team.</p>
    #[serde(rename = "WorkteamName")]
    pub workteam_name: String,
}

/// Errors returned by AddTags
#[derive(Debug, PartialEq)]
pub enum AddTagsError {}

impl AddTagsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<AddTagsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for AddTagsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for AddTagsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by CreateAlgorithm
#[derive(Debug, PartialEq)]
pub enum CreateAlgorithmError {}

impl CreateAlgorithmError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateAlgorithmError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateAlgorithmError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateAlgorithmError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by CreateCodeRepository
#[derive(Debug, PartialEq)]
pub enum CreateCodeRepositoryError {}

impl CreateCodeRepositoryError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateCodeRepositoryError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateCodeRepositoryError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateCodeRepositoryError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by CreateCompilationJob
#[derive(Debug, PartialEq)]
pub enum CreateCompilationJobError {
    /// <p>Resource being accessed is in use.</p>
    ResourceInUse(String),
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateCompilationJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateCompilationJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceInUse" => {
                    return RusotoError::Service(CreateCompilationJobError::ResourceInUse(err.msg))
                }
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(CreateCompilationJobError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateCompilationJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateCompilationJobError {
    fn description(&self) -> &str {
        match *self {
            CreateCompilationJobError::ResourceInUse(ref cause) => cause,
            CreateCompilationJobError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateEndpoint
#[derive(Debug, PartialEq)]
pub enum CreateEndpointError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateEndpointError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateEndpointError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(CreateEndpointError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateEndpointError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateEndpointError {
    fn description(&self) -> &str {
        match *self {
            CreateEndpointError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateEndpointConfig
#[derive(Debug, PartialEq)]
pub enum CreateEndpointConfigError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateEndpointConfigError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateEndpointConfigError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(CreateEndpointConfigError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateEndpointConfigError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateEndpointConfigError {
    fn description(&self) -> &str {
        match *self {
            CreateEndpointConfigError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateHyperParameterTuningJob
#[derive(Debug, PartialEq)]
pub enum CreateHyperParameterTuningJobError {
    /// <p>Resource being accessed is in use.</p>
    ResourceInUse(String),
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateHyperParameterTuningJobError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<CreateHyperParameterTuningJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceInUse" => {
                    return RusotoError::Service(CreateHyperParameterTuningJobError::ResourceInUse(
                        err.msg,
                    ))
                }
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(
                        CreateHyperParameterTuningJobError::ResourceLimitExceeded(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateHyperParameterTuningJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateHyperParameterTuningJobError {
    fn description(&self) -> &str {
        match *self {
            CreateHyperParameterTuningJobError::ResourceInUse(ref cause) => cause,
            CreateHyperParameterTuningJobError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateLabelingJob
#[derive(Debug, PartialEq)]
pub enum CreateLabelingJobError {
    /// <p>Resource being accessed is in use.</p>
    ResourceInUse(String),
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateLabelingJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateLabelingJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceInUse" => {
                    return RusotoError::Service(CreateLabelingJobError::ResourceInUse(err.msg))
                }
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(CreateLabelingJobError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateLabelingJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateLabelingJobError {
    fn description(&self) -> &str {
        match *self {
            CreateLabelingJobError::ResourceInUse(ref cause) => cause,
            CreateLabelingJobError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateModel
#[derive(Debug, PartialEq)]
pub enum CreateModelError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateModelError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateModelError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(CreateModelError::ResourceLimitExceeded(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateModelError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateModelError {
    fn description(&self) -> &str {
        match *self {
            CreateModelError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateModelPackage
#[derive(Debug, PartialEq)]
pub enum CreateModelPackageError {}

impl CreateModelPackageError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateModelPackageError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateModelPackageError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateModelPackageError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by CreateNotebookInstance
#[derive(Debug, PartialEq)]
pub enum CreateNotebookInstanceError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateNotebookInstanceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateNotebookInstanceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(
                        CreateNotebookInstanceError::ResourceLimitExceeded(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateNotebookInstanceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateNotebookInstanceError {
    fn description(&self) -> &str {
        match *self {
            CreateNotebookInstanceError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateNotebookInstanceLifecycleConfig
#[derive(Debug, PartialEq)]
pub enum CreateNotebookInstanceLifecycleConfigError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateNotebookInstanceLifecycleConfigError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<CreateNotebookInstanceLifecycleConfigError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(
                        CreateNotebookInstanceLifecycleConfigError::ResourceLimitExceeded(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateNotebookInstanceLifecycleConfigError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateNotebookInstanceLifecycleConfigError {
    fn description(&self) -> &str {
        match *self {
            CreateNotebookInstanceLifecycleConfigError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreatePresignedNotebookInstanceUrl
#[derive(Debug, PartialEq)]
pub enum CreatePresignedNotebookInstanceUrlError {}

impl CreatePresignedNotebookInstanceUrlError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<CreatePresignedNotebookInstanceUrlError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreatePresignedNotebookInstanceUrlError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreatePresignedNotebookInstanceUrlError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by CreateTrainingJob
#[derive(Debug, PartialEq)]
pub enum CreateTrainingJobError {
    /// <p>Resource being accessed is in use.</p>
    ResourceInUse(String),
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateTrainingJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateTrainingJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceInUse" => {
                    return RusotoError::Service(CreateTrainingJobError::ResourceInUse(err.msg))
                }
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(CreateTrainingJobError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateTrainingJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateTrainingJobError {
    fn description(&self) -> &str {
        match *self {
            CreateTrainingJobError::ResourceInUse(ref cause) => cause,
            CreateTrainingJobError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateTransformJob
#[derive(Debug, PartialEq)]
pub enum CreateTransformJobError {
    /// <p>Resource being accessed is in use.</p>
    ResourceInUse(String),
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateTransformJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateTransformJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceInUse" => {
                    return RusotoError::Service(CreateTransformJobError::ResourceInUse(err.msg))
                }
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(CreateTransformJobError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateTransformJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateTransformJobError {
    fn description(&self) -> &str {
        match *self {
            CreateTransformJobError::ResourceInUse(ref cause) => cause,
            CreateTransformJobError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by CreateWorkteam
#[derive(Debug, PartialEq)]
pub enum CreateWorkteamError {
    /// <p>Resource being accessed is in use.</p>
    ResourceInUse(String),
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl CreateWorkteamError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<CreateWorkteamError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceInUse" => {
                    return RusotoError::Service(CreateWorkteamError::ResourceInUse(err.msg))
                }
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(CreateWorkteamError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for CreateWorkteamError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for CreateWorkteamError {
    fn description(&self) -> &str {
        match *self {
            CreateWorkteamError::ResourceInUse(ref cause) => cause,
            CreateWorkteamError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by DeleteAlgorithm
#[derive(Debug, PartialEq)]
pub enum DeleteAlgorithmError {}

impl DeleteAlgorithmError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteAlgorithmError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteAlgorithmError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteAlgorithmError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteCodeRepository
#[derive(Debug, PartialEq)]
pub enum DeleteCodeRepositoryError {}

impl DeleteCodeRepositoryError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteCodeRepositoryError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteCodeRepositoryError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteCodeRepositoryError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteEndpoint
#[derive(Debug, PartialEq)]
pub enum DeleteEndpointError {}

impl DeleteEndpointError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteEndpointError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteEndpointError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteEndpointError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteEndpointConfig
#[derive(Debug, PartialEq)]
pub enum DeleteEndpointConfigError {}

impl DeleteEndpointConfigError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteEndpointConfigError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteEndpointConfigError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteEndpointConfigError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteModel
#[derive(Debug, PartialEq)]
pub enum DeleteModelError {}

impl DeleteModelError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteModelError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteModelError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteModelError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteModelPackage
#[derive(Debug, PartialEq)]
pub enum DeleteModelPackageError {}

impl DeleteModelPackageError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteModelPackageError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteModelPackageError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteModelPackageError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteNotebookInstance
#[derive(Debug, PartialEq)]
pub enum DeleteNotebookInstanceError {}

impl DeleteNotebookInstanceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteNotebookInstanceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteNotebookInstanceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteNotebookInstanceError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteNotebookInstanceLifecycleConfig
#[derive(Debug, PartialEq)]
pub enum DeleteNotebookInstanceLifecycleConfigError {}

impl DeleteNotebookInstanceLifecycleConfigError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<DeleteNotebookInstanceLifecycleConfigError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteNotebookInstanceLifecycleConfigError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteNotebookInstanceLifecycleConfigError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteTags
#[derive(Debug, PartialEq)]
pub enum DeleteTagsError {}

impl DeleteTagsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteTagsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteTagsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteTagsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DeleteWorkteam
#[derive(Debug, PartialEq)]
pub enum DeleteWorkteamError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl DeleteWorkteamError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DeleteWorkteamError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(DeleteWorkteamError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DeleteWorkteamError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DeleteWorkteamError {
    fn description(&self) -> &str {
        match *self {
            DeleteWorkteamError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeAlgorithm
#[derive(Debug, PartialEq)]
pub enum DescribeAlgorithmError {}

impl DescribeAlgorithmError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeAlgorithmError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeAlgorithmError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeAlgorithmError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeCodeRepository
#[derive(Debug, PartialEq)]
pub enum DescribeCodeRepositoryError {}

impl DescribeCodeRepositoryError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeCodeRepositoryError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeCodeRepositoryError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeCodeRepositoryError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeCompilationJob
#[derive(Debug, PartialEq)]
pub enum DescribeCompilationJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl DescribeCompilationJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeCompilationJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(DescribeCompilationJobError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeCompilationJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeCompilationJobError {
    fn description(&self) -> &str {
        match *self {
            DescribeCompilationJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeEndpoint
#[derive(Debug, PartialEq)]
pub enum DescribeEndpointError {}

impl DescribeEndpointError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeEndpointError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeEndpointError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeEndpointError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeEndpointConfig
#[derive(Debug, PartialEq)]
pub enum DescribeEndpointConfigError {}

impl DescribeEndpointConfigError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeEndpointConfigError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeEndpointConfigError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeEndpointConfigError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeHyperParameterTuningJob
#[derive(Debug, PartialEq)]
pub enum DescribeHyperParameterTuningJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl DescribeHyperParameterTuningJobError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<DescribeHyperParameterTuningJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(
                        DescribeHyperParameterTuningJobError::ResourceNotFound(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeHyperParameterTuningJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeHyperParameterTuningJobError {
    fn description(&self) -> &str {
        match *self {
            DescribeHyperParameterTuningJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeLabelingJob
#[derive(Debug, PartialEq)]
pub enum DescribeLabelingJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl DescribeLabelingJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeLabelingJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(DescribeLabelingJobError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeLabelingJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeLabelingJobError {
    fn description(&self) -> &str {
        match *self {
            DescribeLabelingJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeModel
#[derive(Debug, PartialEq)]
pub enum DescribeModelError {}

impl DescribeModelError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeModelError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeModelError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeModelError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeModelPackage
#[derive(Debug, PartialEq)]
pub enum DescribeModelPackageError {}

impl DescribeModelPackageError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeModelPackageError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeModelPackageError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeModelPackageError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeNotebookInstance
#[derive(Debug, PartialEq)]
pub enum DescribeNotebookInstanceError {}

impl DescribeNotebookInstanceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeNotebookInstanceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeNotebookInstanceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeNotebookInstanceError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeNotebookInstanceLifecycleConfig
#[derive(Debug, PartialEq)]
pub enum DescribeNotebookInstanceLifecycleConfigError {}

impl DescribeNotebookInstanceLifecycleConfigError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<DescribeNotebookInstanceLifecycleConfigError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeNotebookInstanceLifecycleConfigError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeNotebookInstanceLifecycleConfigError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeSubscribedWorkteam
#[derive(Debug, PartialEq)]
pub enum DescribeSubscribedWorkteamError {}

impl DescribeSubscribedWorkteamError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<DescribeSubscribedWorkteamError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeSubscribedWorkteamError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeSubscribedWorkteamError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by DescribeTrainingJob
#[derive(Debug, PartialEq)]
pub enum DescribeTrainingJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl DescribeTrainingJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeTrainingJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(DescribeTrainingJobError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeTrainingJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeTrainingJobError {
    fn description(&self) -> &str {
        match *self {
            DescribeTrainingJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeTransformJob
#[derive(Debug, PartialEq)]
pub enum DescribeTransformJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl DescribeTransformJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeTransformJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(DescribeTransformJobError::ResourceNotFound(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeTransformJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeTransformJobError {
    fn description(&self) -> &str {
        match *self {
            DescribeTransformJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by DescribeWorkteam
#[derive(Debug, PartialEq)]
pub enum DescribeWorkteamError {}

impl DescribeWorkteamError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<DescribeWorkteamError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for DescribeWorkteamError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for DescribeWorkteamError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by GetSearchSuggestions
#[derive(Debug, PartialEq)]
pub enum GetSearchSuggestionsError {}

impl GetSearchSuggestionsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<GetSearchSuggestionsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for GetSearchSuggestionsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for GetSearchSuggestionsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListAlgorithms
#[derive(Debug, PartialEq)]
pub enum ListAlgorithmsError {}

impl ListAlgorithmsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListAlgorithmsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListAlgorithmsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListAlgorithmsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListCodeRepositories
#[derive(Debug, PartialEq)]
pub enum ListCodeRepositoriesError {}

impl ListCodeRepositoriesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListCodeRepositoriesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListCodeRepositoriesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListCodeRepositoriesError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListCompilationJobs
#[derive(Debug, PartialEq)]
pub enum ListCompilationJobsError {}

impl ListCompilationJobsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListCompilationJobsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListCompilationJobsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListCompilationJobsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListEndpointConfigs
#[derive(Debug, PartialEq)]
pub enum ListEndpointConfigsError {}

impl ListEndpointConfigsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListEndpointConfigsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListEndpointConfigsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListEndpointConfigsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListEndpoints
#[derive(Debug, PartialEq)]
pub enum ListEndpointsError {}

impl ListEndpointsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListEndpointsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListEndpointsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListEndpointsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListHyperParameterTuningJobs
#[derive(Debug, PartialEq)]
pub enum ListHyperParameterTuningJobsError {}

impl ListHyperParameterTuningJobsError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<ListHyperParameterTuningJobsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListHyperParameterTuningJobsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListHyperParameterTuningJobsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListLabelingJobs
#[derive(Debug, PartialEq)]
pub enum ListLabelingJobsError {}

impl ListLabelingJobsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListLabelingJobsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListLabelingJobsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListLabelingJobsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListLabelingJobsForWorkteam
#[derive(Debug, PartialEq)]
pub enum ListLabelingJobsForWorkteamError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl ListLabelingJobsForWorkteamError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<ListLabelingJobsForWorkteamError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(
                        ListLabelingJobsForWorkteamError::ResourceNotFound(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListLabelingJobsForWorkteamError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListLabelingJobsForWorkteamError {
    fn description(&self) -> &str {
        match *self {
            ListLabelingJobsForWorkteamError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by ListModelPackages
#[derive(Debug, PartialEq)]
pub enum ListModelPackagesError {}

impl ListModelPackagesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListModelPackagesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListModelPackagesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListModelPackagesError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListModels
#[derive(Debug, PartialEq)]
pub enum ListModelsError {}

impl ListModelsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListModelsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListModelsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListModelsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListNotebookInstanceLifecycleConfigs
#[derive(Debug, PartialEq)]
pub enum ListNotebookInstanceLifecycleConfigsError {}

impl ListNotebookInstanceLifecycleConfigsError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<ListNotebookInstanceLifecycleConfigsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListNotebookInstanceLifecycleConfigsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListNotebookInstanceLifecycleConfigsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListNotebookInstances
#[derive(Debug, PartialEq)]
pub enum ListNotebookInstancesError {}

impl ListNotebookInstancesError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListNotebookInstancesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListNotebookInstancesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListNotebookInstancesError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListSubscribedWorkteams
#[derive(Debug, PartialEq)]
pub enum ListSubscribedWorkteamsError {}

impl ListSubscribedWorkteamsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListSubscribedWorkteamsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListSubscribedWorkteamsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListSubscribedWorkteamsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListTags
#[derive(Debug, PartialEq)]
pub enum ListTagsError {}

impl ListTagsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListTagsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListTagsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListTagsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListTrainingJobs
#[derive(Debug, PartialEq)]
pub enum ListTrainingJobsError {}

impl ListTrainingJobsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListTrainingJobsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListTrainingJobsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListTrainingJobsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListTrainingJobsForHyperParameterTuningJob
#[derive(Debug, PartialEq)]
pub enum ListTrainingJobsForHyperParameterTuningJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl ListTrainingJobsForHyperParameterTuningJobError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<ListTrainingJobsForHyperParameterTuningJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(
                        ListTrainingJobsForHyperParameterTuningJobError::ResourceNotFound(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListTrainingJobsForHyperParameterTuningJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListTrainingJobsForHyperParameterTuningJobError {
    fn description(&self) -> &str {
        match *self {
            ListTrainingJobsForHyperParameterTuningJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by ListTransformJobs
#[derive(Debug, PartialEq)]
pub enum ListTransformJobsError {}

impl ListTransformJobsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListTransformJobsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListTransformJobsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListTransformJobsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by ListWorkteams
#[derive(Debug, PartialEq)]
pub enum ListWorkteamsError {}

impl ListWorkteamsError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<ListWorkteamsError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for ListWorkteamsError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for ListWorkteamsError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by RenderUiTemplate
#[derive(Debug, PartialEq)]
pub enum RenderUiTemplateError {}

impl RenderUiTemplateError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<RenderUiTemplateError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for RenderUiTemplateError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for RenderUiTemplateError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by Search
#[derive(Debug, PartialEq)]
pub enum SearchError {}

impl SearchError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<SearchError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for SearchError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for SearchError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by StartNotebookInstance
#[derive(Debug, PartialEq)]
pub enum StartNotebookInstanceError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl StartNotebookInstanceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StartNotebookInstanceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(StartNotebookInstanceError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StartNotebookInstanceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StartNotebookInstanceError {
    fn description(&self) -> &str {
        match *self {
            StartNotebookInstanceError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by StopCompilationJob
#[derive(Debug, PartialEq)]
pub enum StopCompilationJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl StopCompilationJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopCompilationJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(StopCompilationJobError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StopCompilationJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StopCompilationJobError {
    fn description(&self) -> &str {
        match *self {
            StopCompilationJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by StopHyperParameterTuningJob
#[derive(Debug, PartialEq)]
pub enum StopHyperParameterTuningJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl StopHyperParameterTuningJobError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<StopHyperParameterTuningJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(
                        StopHyperParameterTuningJobError::ResourceNotFound(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StopHyperParameterTuningJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StopHyperParameterTuningJobError {
    fn description(&self) -> &str {
        match *self {
            StopHyperParameterTuningJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by StopLabelingJob
#[derive(Debug, PartialEq)]
pub enum StopLabelingJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl StopLabelingJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopLabelingJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(StopLabelingJobError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StopLabelingJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StopLabelingJobError {
    fn description(&self) -> &str {
        match *self {
            StopLabelingJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by StopNotebookInstance
#[derive(Debug, PartialEq)]
pub enum StopNotebookInstanceError {}

impl StopNotebookInstanceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopNotebookInstanceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StopNotebookInstanceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StopNotebookInstanceError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by StopTrainingJob
#[derive(Debug, PartialEq)]
pub enum StopTrainingJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl StopTrainingJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopTrainingJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(StopTrainingJobError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StopTrainingJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StopTrainingJobError {
    fn description(&self) -> &str {
        match *self {
            StopTrainingJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by StopTransformJob
#[derive(Debug, PartialEq)]
pub enum StopTransformJobError {
    /// <p>Resource being access is not found.</p>
    ResourceNotFound(String),
}

impl StopTransformJobError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<StopTransformJobError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceNotFound" => {
                    return RusotoError::Service(StopTransformJobError::ResourceNotFound(err.msg))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for StopTransformJobError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for StopTransformJobError {
    fn description(&self) -> &str {
        match *self {
            StopTransformJobError::ResourceNotFound(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateCodeRepository
#[derive(Debug, PartialEq)]
pub enum UpdateCodeRepositoryError {}

impl UpdateCodeRepositoryError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateCodeRepositoryError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateCodeRepositoryError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateCodeRepositoryError {
    fn description(&self) -> &str {
        match *self {}
    }
}
/// Errors returned by UpdateEndpoint
#[derive(Debug, PartialEq)]
pub enum UpdateEndpointError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl UpdateEndpointError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateEndpointError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(UpdateEndpointError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateEndpointError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateEndpointError {
    fn description(&self) -> &str {
        match *self {
            UpdateEndpointError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateEndpointWeightsAndCapacities
#[derive(Debug, PartialEq)]
pub enum UpdateEndpointWeightsAndCapacitiesError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl UpdateEndpointWeightsAndCapacitiesError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<UpdateEndpointWeightsAndCapacitiesError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(
                        UpdateEndpointWeightsAndCapacitiesError::ResourceLimitExceeded(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateEndpointWeightsAndCapacitiesError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateEndpointWeightsAndCapacitiesError {
    fn description(&self) -> &str {
        match *self {
            UpdateEndpointWeightsAndCapacitiesError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateNotebookInstance
#[derive(Debug, PartialEq)]
pub enum UpdateNotebookInstanceError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl UpdateNotebookInstanceError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateNotebookInstanceError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(
                        UpdateNotebookInstanceError::ResourceLimitExceeded(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateNotebookInstanceError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateNotebookInstanceError {
    fn description(&self) -> &str {
        match *self {
            UpdateNotebookInstanceError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateNotebookInstanceLifecycleConfig
#[derive(Debug, PartialEq)]
pub enum UpdateNotebookInstanceLifecycleConfigError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl UpdateNotebookInstanceLifecycleConfigError {
    pub fn from_response(
        res: BufferedHttpResponse,
    ) -> RusotoError<UpdateNotebookInstanceLifecycleConfigError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(
                        UpdateNotebookInstanceLifecycleConfigError::ResourceLimitExceeded(err.msg),
                    )
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateNotebookInstanceLifecycleConfigError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateNotebookInstanceLifecycleConfigError {
    fn description(&self) -> &str {
        match *self {
            UpdateNotebookInstanceLifecycleConfigError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Errors returned by UpdateWorkteam
#[derive(Debug, PartialEq)]
pub enum UpdateWorkteamError {
    /// <p> You have exceeded an Amazon SageMaker resource limit. For example, you might have too many training jobs created. </p>
    ResourceLimitExceeded(String),
}

impl UpdateWorkteamError {
    pub fn from_response(res: BufferedHttpResponse) -> RusotoError<UpdateWorkteamError> {
        if let Some(err) = proto::json::Error::parse(&res) {
            match err.typ.as_str() {
                "ResourceLimitExceeded" => {
                    return RusotoError::Service(UpdateWorkteamError::ResourceLimitExceeded(
                        err.msg,
                    ))
                }
                "ValidationException" => return RusotoError::Validation(err.msg),
                _ => {}
            }
        }
        return RusotoError::Unknown(res);
    }
}
impl fmt::Display for UpdateWorkteamError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.description())
    }
}
impl Error for UpdateWorkteamError {
    fn description(&self) -> &str {
        match *self {
            UpdateWorkteamError::ResourceLimitExceeded(ref cause) => cause,
        }
    }
}
/// Trait representing the capabilities of the SageMaker API. SageMaker clients implement this trait.
pub trait SageMaker {
    /// <p><p>Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.</p> <p>Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see <a href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS Tagging Strategies</a>.</p> <note> <p>Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the <code>Tags</code> parameter of <a>CreateHyperParameterTuningJob</a> </p> </note></p>
    fn add_tags(&self, input: AddTagsInput) -> RusotoFuture<AddTagsOutput, AddTagsError>;

    /// <p>Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.</p>
    fn create_algorithm(
        &self,
        input: CreateAlgorithmInput,
    ) -> RusotoFuture<CreateAlgorithmOutput, CreateAlgorithmError>;

    /// <p>Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.</p> <p>The repository can be hosted either in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository.</p>
    fn create_code_repository(
        &self,
        input: CreateCodeRepositoryInput,
    ) -> RusotoFuture<CreateCodeRepositoryOutput, CreateCodeRepositoryError>;

    /// <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p> <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p>A name for the compilation job</p> </li> <li> <p> Information about the input model artifacts </p> </li> <li> <p>The output location for the compiled model and the device (target) that the model runs on </p> </li> <li> <p> <code>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job</code> </p> </li> </ul> <p>You can also provide a <code>Tag</code> to track the model compilation job's resource use and costs. The response body contains the <code>CompilationJobArn</code> for the compiled job.</p> <p>To stop a model compilation job, use <a>StopCompilationJob</a>. To get information about a particular model compilation job, use <a>DescribeCompilationJob</a>. To get information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p>
    fn create_compilation_job(
        &self,
        input: CreateCompilationJobRequest,
    ) -> RusotoFuture<CreateCompilationJobResponse, CreateCompilationJobError>;

    /// <p>Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API. </p> <note> <p> Use this API only for hosting models using Amazon SageMaker hosting services. </p> <p> You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note> <p>The endpoint name must be unique within an AWS Region in your AWS account. </p> <p>When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. </p> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Creating</code>. After it creates the endpoint, it sets the status to <code>InService</code>. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API.</p> <p>For an example, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/ex1.html">Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker</a>. </p> <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see <a href="http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating AWS STS i an AWS Region</a> in the <i>AWS Identity and Access Management User Guide</i>.</p>
    fn create_endpoint(
        &self,
        input: CreateEndpointInput,
    ) -> RusotoFuture<CreateEndpointOutput, CreateEndpointError>;

    /// <p>Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the <code>CreateModel</code> API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p> <note> <p> Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production. </p> </note> <p>In the request, you define one or more <code>ProductionVariant</code>s, each of which identifies a model. Each <code>ProductionVariant</code> parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. </p> <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. </p>
    fn create_endpoint_config(
        &self,
        input: CreateEndpointConfigInput,
    ) -> RusotoFuture<CreateEndpointConfigOutput, CreateEndpointConfigError>;

    /// <p>Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.</p>
    fn create_hyper_parameter_tuning_job(
        &self,
        input: CreateHyperParameterTuningJobRequest,
    ) -> RusotoFuture<CreateHyperParameterTuningJobResponse, CreateHyperParameterTuningJobError>;

    /// <p>Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.</p> <p>You can select your workforce from one of three providers:</p> <ul> <li> <p>A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.</p> </li> <li> <p>One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas. </p> </li> <li> <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.</p> </li> </ul> <p>You can also use <i>automated data labeling</i> to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses <i>active learning</i> to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using Automated Data Labeling</a>.</p> <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a <i>manifest file</i> that describes the location of each object. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p> <p>The output can be used as the manifest file for another labeling job or as training data for your machine learning models.</p>
    fn create_labeling_job(
        &self,
        input: CreateLabelingJobRequest,
    ) -> RusotoFuture<CreateLabelingJobResponse, CreateLabelingJobError>;

    /// <p>Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions.</p> <p>Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job.</p> <p>To host your model, you create an endpoint configuration with the <code>CreateEndpointConfig</code> API, and then create an endpoint with the <code>CreateEndpoint</code> API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. </p> <p>To run a batch transform using your model, you start a job with the <code>CreateTransformJob</code> API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.</p> <p>In the <code>CreateModel</code> request, you must define a container with the <code>PrimaryContainer</code> parameter.</p> <p>In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.</p>
    fn create_model(
        &self,
        input: CreateModelInput,
    ) -> RusotoFuture<CreateModelOutput, CreateModelError>;

    /// <p>Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.</p> <p>To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for <code>InferenceSpecification</code>. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for <code>SourceAlgorithmSpecification</code>.</p>
    fn create_model_package(
        &self,
        input: CreateModelPackageInput,
    ) -> RusotoFuture<CreateModelPackageOutput, CreateModelPackageError>;

    /// <p>Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. </p> <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. </p> <p>Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. </p> <p>After receiving the request, Amazon SageMaker does the following:</p> <ol> <li> <p>Creates a network interface in the Amazon SageMaker VPC.</p> </li> <li> <p>(Option) If you specified <code>SubnetId</code>, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.</p> </li> <li> <p>Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified <code>SubnetId</code> of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.</p> </li> </ol> <p>After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN).</p> <p>After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
    fn create_notebook_instance(
        &self,
        input: CreateNotebookInstanceInput,
    ) -> RusotoFuture<CreateNotebookInstanceOutput, CreateNotebookInstanceError>;

    /// <p>Creates a lifecycle configuration that you can associate with a notebook instance. A <i>lifecycle configuration</i> is a collection of shell scripts that run when you create or start a notebook instance.</p> <p>Each lifecycle configuration script has a limit of 16384 characters.</p> <p>The value of the <code>$PATH</code> environment variable that is available to both scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p> <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group <code>/aws/sagemaker/NotebookInstances</code> in log stream <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p> <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
    fn create_notebook_instance_lifecycle_config(
        &self,
        input: CreateNotebookInstanceLifecycleConfigInput,
    ) -> RusotoFuture<
        CreateNotebookInstanceLifecycleConfigOutput,
        CreateNotebookInstanceLifecycleConfigError,
    >;

    /// <p><p>Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose <code>Open</code> next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.</p> <p>You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. To restrict access, attach an IAM policy that denies access to this API unless the call comes from an IP address in the specified list to every AWS Identity and Access Management user, group, or role used to access the notebook instance. Use the <code>NotIpAddress</code> condition operator and the <code>aws:SourceIP</code> condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-ip-filter.html">Limit Access to a Notebook Instance by IP Address</a>.</p> <note> <p>The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.</p> </note></p>
    fn create_presigned_notebook_instance_url(
        &self,
        input: CreatePresignedNotebookInstanceUrlInput,
    ) -> RusotoFuture<
        CreatePresignedNotebookInstanceUrlOutput,
        CreatePresignedNotebookInstanceUrlError,
    >;

    /// <p>Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. </p> <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. </p> <p>In the request body, you provide the following: </p> <ul> <li> <p> <code>AlgorithmSpecification</code> - Identifies the training algorithm to use. </p> </li> <li> <p> <code>HyperParameters</code> - Specify these algorithm-specific parameters to influence the quality of the final model. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> </li> <li> <p> <code>InputDataConfig</code> - Describes the training dataset and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>OutputDataConfig</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training. </p> <p/> </li> <li> <p> <code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. </p> </li> <li> <p> <code>RoleARN</code> - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. </p> </li> <li> <p> <code>StoppingCondition</code> - Sets a duration for training. Use this parameter to cap model training costs. </p> </li> </ul> <p> For more information about Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
    fn create_training_job(
        &self,
        input: CreateTrainingJobRequest,
    ) -> RusotoFuture<CreateTrainingJobResponse, CreateTrainingJobError>;

    /// <p>Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.</p> <p>To perform batch transformations, you create a transform job and use the data that you have readily available.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p> <code>TransformJobName</code> - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.</p> </li> <li> <p> <code>ModelName</code> - Identifies the model to use. <code>ModelName</code> must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see <a>CreateModel</a>.</p> </li> <li> <p> <code>TransformInput</code> - Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>TransformOutput</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> </li> <li> <p> <code>TransformResources</code> - Identifies the ML compute instances for the transform job.</p> </li> </ul> <p> For more information about how batch transformation works Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">How It Works</a>. </p>
    fn create_transform_job(
        &self,
        input: CreateTransformJobRequest,
    ) -> RusotoFuture<CreateTransformJobResponse, CreateTransformJobError>;

    /// <p>Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.</p> <p>You cannot create more than 25 work teams in an account and region.</p>
    fn create_workteam(
        &self,
        input: CreateWorkteamRequest,
    ) -> RusotoFuture<CreateWorkteamResponse, CreateWorkteamError>;

    /// <p>Removes the specified algorithm from your account.</p>
    fn delete_algorithm(
        &self,
        input: DeleteAlgorithmInput,
    ) -> RusotoFuture<(), DeleteAlgorithmError>;

    /// <p>Deletes the specified Git repository from your account.</p>
    fn delete_code_repository(
        &self,
        input: DeleteCodeRepositoryInput,
    ) -> RusotoFuture<(), DeleteCodeRepositoryError>;

    /// <p>Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. </p> <p>Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the <a href="http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html">RevokeGrant</a> API call.</p>
    fn delete_endpoint(&self, input: DeleteEndpointInput) -> RusotoFuture<(), DeleteEndpointError>;

    /// <p>Deletes an endpoint configuration. The <code>DeleteEndpointConfig</code> API deletes only the specified configuration. It does not delete endpoints created using the configuration. </p>
    fn delete_endpoint_config(
        &self,
        input: DeleteEndpointConfigInput,
    ) -> RusotoFuture<(), DeleteEndpointConfigError>;

    /// <p>Deletes a model. The <code>DeleteModel</code> API deletes only the model entry that was created in Amazon SageMaker when you called the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html">CreateModel</a> API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model. </p>
    fn delete_model(&self, input: DeleteModelInput) -> RusotoFuture<(), DeleteModelError>;

    /// <p>Deletes a model package.</p> <p>A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.</p>
    fn delete_model_package(
        &self,
        input: DeleteModelPackageInput,
    ) -> RusotoFuture<(), DeleteModelPackageError>;

    /// <p><p> Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the <code>StopNotebookInstance</code> API. </p> <important> <p>When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance. </p> </important></p>
    fn delete_notebook_instance(
        &self,
        input: DeleteNotebookInstanceInput,
    ) -> RusotoFuture<(), DeleteNotebookInstanceError>;

    /// <p>Deletes a notebook instance lifecycle configuration.</p>
    fn delete_notebook_instance_lifecycle_config(
        &self,
        input: DeleteNotebookInstanceLifecycleConfigInput,
    ) -> RusotoFuture<(), DeleteNotebookInstanceLifecycleConfigError>;

    /// <p><p>Deletes the specified tags from an Amazon SageMaker resource.</p> <p>To list a resource&#39;s tags, use the <code>ListTags</code> API. </p> <note> <p>When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.</p> </note></p>
    fn delete_tags(
        &self,
        input: DeleteTagsInput,
    ) -> RusotoFuture<DeleteTagsOutput, DeleteTagsError>;

    /// <p>Deletes an existing work team. This operation can't be undone.</p>
    fn delete_workteam(
        &self,
        input: DeleteWorkteamRequest,
    ) -> RusotoFuture<DeleteWorkteamResponse, DeleteWorkteamError>;

    /// <p>Returns a description of the specified algorithm that is in your account.</p>
    fn describe_algorithm(
        &self,
        input: DescribeAlgorithmInput,
    ) -> RusotoFuture<DescribeAlgorithmOutput, DescribeAlgorithmError>;

    /// <p>Gets details about the specified Git repository.</p>
    fn describe_code_repository(
        &self,
        input: DescribeCodeRepositoryInput,
    ) -> RusotoFuture<DescribeCodeRepositoryOutput, DescribeCodeRepositoryError>;

    /// <p>Returns information about a model compilation job.</p> <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p>
    fn describe_compilation_job(
        &self,
        input: DescribeCompilationJobRequest,
    ) -> RusotoFuture<DescribeCompilationJobResponse, DescribeCompilationJobError>;

    /// <p>Returns the description of an endpoint.</p>
    fn describe_endpoint(
        &self,
        input: DescribeEndpointInput,
    ) -> RusotoFuture<DescribeEndpointOutput, DescribeEndpointError>;

    /// <p>Returns the description of an endpoint configuration created using the <code>CreateEndpointConfig</code> API.</p>
    fn describe_endpoint_config(
        &self,
        input: DescribeEndpointConfigInput,
    ) -> RusotoFuture<DescribeEndpointConfigOutput, DescribeEndpointConfigError>;

    /// <p>Gets a description of a hyperparameter tuning job.</p>
    fn describe_hyper_parameter_tuning_job(
        &self,
        input: DescribeHyperParameterTuningJobRequest,
    ) -> RusotoFuture<DescribeHyperParameterTuningJobResponse, DescribeHyperParameterTuningJobError>;

    /// <p>Gets information about a labeling job.</p>
    fn describe_labeling_job(
        &self,
        input: DescribeLabelingJobRequest,
    ) -> RusotoFuture<DescribeLabelingJobResponse, DescribeLabelingJobError>;

    /// <p>Describes a model that you created using the <code>CreateModel</code> API.</p>
    fn describe_model(
        &self,
        input: DescribeModelInput,
    ) -> RusotoFuture<DescribeModelOutput, DescribeModelError>;

    /// <p>Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace.</p> <p>To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.</p>
    fn describe_model_package(
        &self,
        input: DescribeModelPackageInput,
    ) -> RusotoFuture<DescribeModelPackageOutput, DescribeModelPackageError>;

    /// <p>Returns information about a notebook instance.</p>
    fn describe_notebook_instance(
        &self,
        input: DescribeNotebookInstanceInput,
    ) -> RusotoFuture<DescribeNotebookInstanceOutput, DescribeNotebookInstanceError>;

    /// <p>Returns a description of a notebook instance lifecycle configuration.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
    fn describe_notebook_instance_lifecycle_config(
        &self,
        input: DescribeNotebookInstanceLifecycleConfigInput,
    ) -> RusotoFuture<
        DescribeNotebookInstanceLifecycleConfigOutput,
        DescribeNotebookInstanceLifecycleConfigError,
    >;

    /// <p>Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.</p>
    fn describe_subscribed_workteam(
        &self,
        input: DescribeSubscribedWorkteamRequest,
    ) -> RusotoFuture<DescribeSubscribedWorkteamResponse, DescribeSubscribedWorkteamError>;

    /// <p>Returns information about a training job.</p>
    fn describe_training_job(
        &self,
        input: DescribeTrainingJobRequest,
    ) -> RusotoFuture<DescribeTrainingJobResponse, DescribeTrainingJobError>;

    /// <p>Returns information about a transform job.</p>
    fn describe_transform_job(
        &self,
        input: DescribeTransformJobRequest,
    ) -> RusotoFuture<DescribeTransformJobResponse, DescribeTransformJobError>;

    /// <p>Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).</p>
    fn describe_workteam(
        &self,
        input: DescribeWorkteamRequest,
    ) -> RusotoFuture<DescribeWorkteamResponse, DescribeWorkteamError>;

    /// <p>An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in <code>Search</code> queries. Provides suggestions for <code>HyperParameters</code>, <code>Tags</code>, and <code>Metrics</code>.</p>
    fn get_search_suggestions(
        &self,
        input: GetSearchSuggestionsRequest,
    ) -> RusotoFuture<GetSearchSuggestionsResponse, GetSearchSuggestionsError>;

    /// <p>Lists the machine learning algorithms that have been created.</p>
    fn list_algorithms(
        &self,
        input: ListAlgorithmsInput,
    ) -> RusotoFuture<ListAlgorithmsOutput, ListAlgorithmsError>;

    /// <p>Gets a list of the Git repositories in your account.</p>
    fn list_code_repositories(
        &self,
        input: ListCodeRepositoriesInput,
    ) -> RusotoFuture<ListCodeRepositoriesOutput, ListCodeRepositoriesError>;

    /// <p>Lists model compilation jobs that satisfy various filters.</p> <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get information about a particular model compilation job you have created, use <a>DescribeCompilationJob</a>.</p>
    fn list_compilation_jobs(
        &self,
        input: ListCompilationJobsRequest,
    ) -> RusotoFuture<ListCompilationJobsResponse, ListCompilationJobsError>;

    /// <p>Lists endpoint configurations.</p>
    fn list_endpoint_configs(
        &self,
        input: ListEndpointConfigsInput,
    ) -> RusotoFuture<ListEndpointConfigsOutput, ListEndpointConfigsError>;

    /// <p>Lists endpoints.</p>
    fn list_endpoints(
        &self,
        input: ListEndpointsInput,
    ) -> RusotoFuture<ListEndpointsOutput, ListEndpointsError>;

    /// <p>Gets a list of <a>HyperParameterTuningJobSummary</a> objects that describe the hyperparameter tuning jobs launched in your account.</p>
    fn list_hyper_parameter_tuning_jobs(
        &self,
        input: ListHyperParameterTuningJobsRequest,
    ) -> RusotoFuture<ListHyperParameterTuningJobsResponse, ListHyperParameterTuningJobsError>;

    /// <p>Gets a list of labeling jobs.</p>
    fn list_labeling_jobs(
        &self,
        input: ListLabelingJobsRequest,
    ) -> RusotoFuture<ListLabelingJobsResponse, ListLabelingJobsError>;

    /// <p>Gets a list of labeling jobs assigned to a specified work team.</p>
    fn list_labeling_jobs_for_workteam(
        &self,
        input: ListLabelingJobsForWorkteamRequest,
    ) -> RusotoFuture<ListLabelingJobsForWorkteamResponse, ListLabelingJobsForWorkteamError>;

    /// <p>Lists the model packages that have been created.</p>
    fn list_model_packages(
        &self,
        input: ListModelPackagesInput,
    ) -> RusotoFuture<ListModelPackagesOutput, ListModelPackagesError>;

    /// <p>Lists models created with the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html">CreateModel</a> API.</p>
    fn list_models(
        &self,
        input: ListModelsInput,
    ) -> RusotoFuture<ListModelsOutput, ListModelsError>;

    /// <p>Lists notebook instance lifestyle configurations created with the <a>CreateNotebookInstanceLifecycleConfig</a> API.</p>
    fn list_notebook_instance_lifecycle_configs(
        &self,
        input: ListNotebookInstanceLifecycleConfigsInput,
    ) -> RusotoFuture<
        ListNotebookInstanceLifecycleConfigsOutput,
        ListNotebookInstanceLifecycleConfigsError,
    >;

    /// <p>Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region. </p>
    fn list_notebook_instances(
        &self,
        input: ListNotebookInstancesInput,
    ) -> RusotoFuture<ListNotebookInstancesOutput, ListNotebookInstancesError>;

    /// <p>Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the <code>NameContains</code> parameter.</p>
    fn list_subscribed_workteams(
        &self,
        input: ListSubscribedWorkteamsRequest,
    ) -> RusotoFuture<ListSubscribedWorkteamsResponse, ListSubscribedWorkteamsError>;

    /// <p>Returns the tags for the specified Amazon SageMaker resource.</p>
    fn list_tags(&self, input: ListTagsInput) -> RusotoFuture<ListTagsOutput, ListTagsError>;

    /// <p>Lists training jobs.</p>
    fn list_training_jobs(
        &self,
        input: ListTrainingJobsRequest,
    ) -> RusotoFuture<ListTrainingJobsResponse, ListTrainingJobsError>;

    /// <p>Gets a list of <a>TrainingJobSummary</a> objects that describe the training jobs that a hyperparameter tuning job launched.</p>
    fn list_training_jobs_for_hyper_parameter_tuning_job(
        &self,
        input: ListTrainingJobsForHyperParameterTuningJobRequest,
    ) -> RusotoFuture<
        ListTrainingJobsForHyperParameterTuningJobResponse,
        ListTrainingJobsForHyperParameterTuningJobError,
    >;

    /// <p>Lists transform jobs.</p>
    fn list_transform_jobs(
        &self,
        input: ListTransformJobsRequest,
    ) -> RusotoFuture<ListTransformJobsResponse, ListTransformJobsError>;

    /// <p>Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the <code>NameContains</code> parameter.</p>
    fn list_workteams(
        &self,
        input: ListWorkteamsRequest,
    ) -> RusotoFuture<ListWorkteamsResponse, ListWorkteamsError>;

    /// <p>Renders the UI template so that you can preview the worker's experience. </p>
    fn render_ui_template(
        &self,
        input: RenderUiTemplateRequest,
    ) -> RusotoFuture<RenderUiTemplateResponse, RenderUiTemplateError>;

    /// <p>Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of <code>SearchResult</code> objects in the response. You can sort the search results by any resource property in a ascending or descending order.</p> <p>You can query against the following value types: numerical, text, Booleans, and timestamps.</p>
    fn search(&self, input: SearchRequest) -> RusotoFuture<SearchResponse, SearchError>;

    /// <p>Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to <code>InService</code>. A notebook instance's status must be <code>InService</code> before you can connect to your Jupyter notebook. </p>
    fn start_notebook_instance(
        &self,
        input: StartNotebookInstanceInput,
    ) -> RusotoFuture<(), StartNotebookInstanceError>;

    /// <p>Stops a model compilation job.</p> <p> To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal.</p> <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the <a>CompilationJobSummary$CompilationJobStatus</a> of the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the <a>CompilationJobSummary$CompilationJobStatus</a> to <code>Stopped</code>. </p>
    fn stop_compilation_job(
        &self,
        input: StopCompilationJobRequest,
    ) -> RusotoFuture<(), StopCompilationJobError>;

    /// <p>Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.</p> <p>All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the <code>Stopped</code> state, it releases all reserved resources for the tuning job.</p>
    fn stop_hyper_parameter_tuning_job(
        &self,
        input: StopHyperParameterTuningJobRequest,
    ) -> RusotoFuture<(), StopHyperParameterTuningJobError>;

    /// <p>Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.</p>
    fn stop_labeling_job(
        &self,
        input: StopLabelingJobRequest,
    ) -> RusotoFuture<(), StopLabelingJobError>;

    /// <p>Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call <code>StopNotebookInstance</code>.</p> <p>To access data on the ML storage volume for a notebook instance that has been terminated, call the <code>StartNotebookInstance</code> API. <code>StartNotebookInstance</code> launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work. </p>
    fn stop_notebook_instance(
        &self,
        input: StopNotebookInstanceInput,
    ) -> RusotoFuture<(), StopNotebookInstanceError>;

    /// <p>Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. </p> <p>When it receives a <code>StopTrainingJob</code> request, Amazon SageMaker changes the status of the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the status to <code>Stopped</code>.</p>
    fn stop_training_job(
        &self,
        input: StopTrainingJobRequest,
    ) -> RusotoFuture<(), StopTrainingJobError>;

    /// <p>Stops a transform job.</p> <p>When Amazon SageMaker receives a <code>StopTransformJob</code> request, the status of the job changes to <code>Stopping</code>. After Amazon SageMaker stops the job, the status is set to <code>Stopped</code>. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.</p>
    fn stop_transform_job(
        &self,
        input: StopTransformJobRequest,
    ) -> RusotoFuture<(), StopTransformJobError>;

    /// <p>Updates the specified Git repository with the specified values.</p>
    fn update_code_repository(
        &self,
        input: UpdateCodeRepositoryInput,
    ) -> RusotoFuture<UpdateCodeRepositoryOutput, UpdateCodeRepositoryError>;

    /// <p><p>Deploys the new <code>EndpointConfig</code> specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous <code>EndpointConfig</code> (there is no availability loss). </p> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Updating</code>. After updating the endpoint, it sets the status to <code>InService</code>. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API. </p> <note> <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note></p>
    fn update_endpoint(
        &self,
        input: UpdateEndpointInput,
    ) -> RusotoFuture<UpdateEndpointOutput, UpdateEndpointError>;

    /// <p>Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to <code>Updating</code>. After updating the endpoint, it sets the status to <code>InService</code>. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API. </p>
    fn update_endpoint_weights_and_capacities(
        &self,
        input: UpdateEndpointWeightsAndCapacitiesInput,
    ) -> RusotoFuture<
        UpdateEndpointWeightsAndCapacitiesOutput,
        UpdateEndpointWeightsAndCapacitiesError,
    >;

    /// <p>Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.</p>
    fn update_notebook_instance(
        &self,
        input: UpdateNotebookInstanceInput,
    ) -> RusotoFuture<UpdateNotebookInstanceOutput, UpdateNotebookInstanceError>;

    /// <p>Updates a notebook instance lifecycle configuration created with the <a>CreateNotebookInstanceLifecycleConfig</a> API.</p>
    fn update_notebook_instance_lifecycle_config(
        &self,
        input: UpdateNotebookInstanceLifecycleConfigInput,
    ) -> RusotoFuture<
        UpdateNotebookInstanceLifecycleConfigOutput,
        UpdateNotebookInstanceLifecycleConfigError,
    >;

    /// <p>Updates an existing work team with new member definitions or description.</p>
    fn update_workteam(
        &self,
        input: UpdateWorkteamRequest,
    ) -> RusotoFuture<UpdateWorkteamResponse, UpdateWorkteamError>;
}
/// A client for the SageMaker API.
#[derive(Clone)]
pub struct SageMakerClient {
    client: Client,
    region: region::Region,
}

impl SageMakerClient {
    /// Creates a client backed by the default tokio event loop.
    ///
    /// The client will use the default credentials provider and tls client.
    pub fn new(region: region::Region) -> SageMakerClient {
        SageMakerClient {
            client: Client::shared(),
            region,
        }
    }

    pub fn new_with<P, D>(
        request_dispatcher: D,
        credentials_provider: P,
        region: region::Region,
    ) -> SageMakerClient
    where
        P: ProvideAwsCredentials + Send + Sync + 'static,
        P::Future: Send,
        D: DispatchSignedRequest + Send + Sync + 'static,
        D::Future: Send,
    {
        SageMakerClient {
            client: Client::new_with(credentials_provider, request_dispatcher),
            region,
        }
    }
}

impl SageMaker for SageMakerClient {
    /// <p><p>Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.</p> <p>Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see <a href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS Tagging Strategies</a>.</p> <note> <p>Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the <code>Tags</code> parameter of <a>CreateHyperParameterTuningJob</a> </p> </note></p>
    fn add_tags(&self, input: AddTagsInput) -> RusotoFuture<AddTagsOutput, AddTagsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.AddTags");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response).deserialize::<AddTagsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(AddTagsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.</p>
    fn create_algorithm(
        &self,
        input: CreateAlgorithmInput,
    ) -> RusotoFuture<CreateAlgorithmOutput, CreateAlgorithmError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateAlgorithm");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateAlgorithmOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateAlgorithmError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.</p> <p>The repository can be hosted either in <a href="http://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">AWS CodeCommit</a> or in any other Git repository.</p>
    fn create_code_repository(
        &self,
        input: CreateCodeRepositoryInput,
    ) -> RusotoFuture<CreateCodeRepositoryOutput, CreateCodeRepositoryError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateCodeRepository");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateCodeRepositoryOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(CreateCodeRepositoryError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p> <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p>A name for the compilation job</p> </li> <li> <p> Information about the input model artifacts </p> </li> <li> <p>The output location for the compiled model and the device (target) that the model runs on </p> </li> <li> <p> <code>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job</code> </p> </li> </ul> <p>You can also provide a <code>Tag</code> to track the model compilation job's resource use and costs. The response body contains the <code>CompilationJobArn</code> for the compiled job.</p> <p>To stop a model compilation job, use <a>StopCompilationJob</a>. To get information about a particular model compilation job, use <a>DescribeCompilationJob</a>. To get information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p>
    fn create_compilation_job(
        &self,
        input: CreateCompilationJobRequest,
    ) -> RusotoFuture<CreateCompilationJobResponse, CreateCompilationJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateCompilationJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateCompilationJobResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(CreateCompilationJobError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API. </p> <note> <p> Use this API only for hosting models using Amazon SageMaker hosting services. </p> <p> You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note> <p>The endpoint name must be unique within an AWS Region in your AWS account. </p> <p>When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. </p> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Creating</code>. After it creates the endpoint, it sets the status to <code>InService</code>. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API.</p> <p>For an example, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/ex1.html">Exercise 1: Using the K-Means Algorithm Provided by Amazon SageMaker</a>. </p> <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see <a href="http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating AWS STS i an AWS Region</a> in the <i>AWS Identity and Access Management User Guide</i>.</p>
    fn create_endpoint(
        &self,
        input: CreateEndpointInput,
    ) -> RusotoFuture<CreateEndpointOutput, CreateEndpointError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateEndpoint");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateEndpointOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateEndpointError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the <code>CreateModel</code> API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html">CreateEndpoint</a> API.</p> <note> <p> Use this API only if you want to use Amazon SageMaker hosting services to deploy models into production. </p> </note> <p>In the request, you define one or more <code>ProductionVariant</code>s, each of which identifies a model. Each <code>ProductionVariant</code> parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy. </p> <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. </p>
    fn create_endpoint_config(
        &self,
        input: CreateEndpointConfigInput,
    ) -> RusotoFuture<CreateEndpointConfigOutput, CreateEndpointConfigError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateEndpointConfig");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateEndpointConfigOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(CreateEndpointConfigError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.</p>
    fn create_hyper_parameter_tuning_job(
        &self,
        input: CreateHyperParameterTuningJobRequest,
    ) -> RusotoFuture<CreateHyperParameterTuningJobResponse, CreateHyperParameterTuningJobError>
    {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateHyperParameterTuningJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateHyperParameterTuningJobResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(CreateHyperParameterTuningJobError::from_response(response))
                }))
            }
        })
    }

    /// <p>Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.</p> <p>You can select your workforce from one of three providers:</p> <ul> <li> <p>A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.</p> </li> <li> <p>One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas. </p> </li> <li> <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.</p> </li> </ul> <p>You can also use <i>automated data labeling</i> to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses <i>active learning</i> to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using Automated Data Labeling</a>.</p> <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a <i>manifest file</i> that describes the location of each object. For more information, see <a href="http://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p> <p>The output can be used as the manifest file for another labeling job or as training data for your machine learning models.</p>
    fn create_labeling_job(
        &self,
        input: CreateLabelingJobRequest,
    ) -> RusotoFuture<CreateLabelingJobResponse, CreateLabelingJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateLabelingJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateLabelingJobResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateLabelingJobError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the docker image containing inference code, artifacts (from prior training), and custom environment map that the inference code uses when you deploy the model for predictions.</p> <p>Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job.</p> <p>To host your model, you create an endpoint configuration with the <code>CreateEndpointConfig</code> API, and then create an endpoint with the <code>CreateEndpoint</code> API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment. </p> <p>To run a batch transform using your model, you start a job with the <code>CreateTransformJob</code> API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.</p> <p>In the <code>CreateModel</code> request, you must define a container with the <code>PrimaryContainer</code> parameter.</p> <p>In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.</p>
    fn create_model(
        &self,
        input: CreateModelInput,
    ) -> RusotoFuture<CreateModelOutput, CreateModelError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateModel");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateModelOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateModelError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.</p> <p>To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for <code>InferenceSpecification</code>. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for <code>SourceAlgorithmSpecification</code>.</p>
    fn create_model_package(
        &self,
        input: CreateModelPackageInput,
    ) -> RusotoFuture<CreateModelPackageOutput, CreateModelPackageError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateModelPackage");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateModelPackageOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateModelPackageError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. </p> <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. </p> <p>Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework. </p> <p>After receiving the request, Amazon SageMaker does the following:</p> <ol> <li> <p>Creates a network interface in the Amazon SageMaker VPC.</p> </li> <li> <p>(Option) If you specified <code>SubnetId</code>, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.</p> </li> <li> <p>Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified <code>SubnetId</code> of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.</p> </li> </ol> <p>After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN).</p> <p>After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models. </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
    fn create_notebook_instance(
        &self,
        input: CreateNotebookInstanceInput,
    ) -> RusotoFuture<CreateNotebookInstanceOutput, CreateNotebookInstanceError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateNotebookInstance");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateNotebookInstanceOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(CreateNotebookInstanceError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Creates a lifecycle configuration that you can associate with a notebook instance. A <i>lifecycle configuration</i> is a collection of shell scripts that run when you create or start a notebook instance.</p> <p>Each lifecycle configuration script has a limit of 16384 characters.</p> <p>The value of the <code>$PATH</code> environment variable that is available to both scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p> <p>View CloudWatch Logs for notebook instance lifecycle configurations in log group <code>/aws/sagemaker/NotebookInstances</code> in log stream <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p> <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
    fn create_notebook_instance_lifecycle_config(
        &self,
        input: CreateNotebookInstanceLifecycleConfigInput,
    ) -> RusotoFuture<
        CreateNotebookInstanceLifecycleConfigOutput,
        CreateNotebookInstanceLifecycleConfigError,
    > {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "SageMaker.CreateNotebookInstanceLifecycleConfig",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateNotebookInstanceLifecycleConfigOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(CreateNotebookInstanceLifecycleConfigError::from_response(
                        response,
                    ))
                }))
            }
        })
    }

    /// <p><p>Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose <code>Open</code> next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.</p> <p>You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. To restrict access, attach an IAM policy that denies access to this API unless the call comes from an IP address in the specified list to every AWS Identity and Access Management user, group, or role used to access the notebook instance. Use the <code>NotIpAddress</code> condition operator and the <code>aws:SourceIP</code> condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-ip-filter.html">Limit Access to a Notebook Instance by IP Address</a>.</p> <note> <p>The URL that you get from a call to is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.</p> </note></p>
    fn create_presigned_notebook_instance_url(
        &self,
        input: CreatePresignedNotebookInstanceUrlInput,
    ) -> RusotoFuture<
        CreatePresignedNotebookInstanceUrlOutput,
        CreatePresignedNotebookInstanceUrlError,
    > {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "SageMaker.CreatePresignedNotebookInstanceUrl",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreatePresignedNotebookInstanceUrlOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(CreatePresignedNotebookInstanceUrlError::from_response(
                        response,
                    ))
                }))
            }
        })
    }

    /// <p>Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. </p> <p>If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inferences. </p> <p>In the request body, you provide the following: </p> <ul> <li> <p> <code>AlgorithmSpecification</code> - Identifies the training algorithm to use. </p> </li> <li> <p> <code>HyperParameters</code> - Specify these algorithm-specific parameters to influence the quality of the final model. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> </li> <li> <p> <code>InputDataConfig</code> - Describes the training dataset and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>OutputDataConfig</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results of model training. </p> <p/> </li> <li> <p> <code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. </p> </li> <li> <p> <code>RoleARN</code> - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training. </p> </li> <li> <p> <code>StoppingCondition</code> - Sets a duration for training. Use this parameter to cap model training costs. </p> </li> </ul> <p> For more information about Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
    fn create_training_job(
        &self,
        input: CreateTrainingJobRequest,
    ) -> RusotoFuture<CreateTrainingJobResponse, CreateTrainingJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateTrainingJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateTrainingJobResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateTrainingJobError::from_response(response))),
                )
            }
        })
    }

    /// <p>Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.</p> <p>To perform batch transformations, you create a transform job and use the data that you have readily available.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p> <code>TransformJobName</code> - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.</p> </li> <li> <p> <code>ModelName</code> - Identifies the model to use. <code>ModelName</code> must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see <a>CreateModel</a>.</p> </li> <li> <p> <code>TransformInput</code> - Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>TransformOutput</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> </li> <li> <p> <code>TransformResources</code> - Identifies the ML compute instances for the transform job.</p> </li> </ul> <p> For more information about how batch transformation works Amazon SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">How It Works</a>. </p>
    fn create_transform_job(
        &self,
        input: CreateTransformJobRequest,
    ) -> RusotoFuture<CreateTransformJobResponse, CreateTransformJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateTransformJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateTransformJobResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateTransformJobError::from_response(response))),
                )
            }
        })
    }

    /// <p>Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.</p> <p>You cannot create more than 25 work teams in an account and region.</p>
    fn create_workteam(
        &self,
        input: CreateWorkteamRequest,
    ) -> RusotoFuture<CreateWorkteamResponse, CreateWorkteamError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.CreateWorkteam");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<CreateWorkteamResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(CreateWorkteamError::from_response(response))),
                )
            }
        })
    }

    /// <p>Removes the specified algorithm from your account.</p>
    fn delete_algorithm(
        &self,
        input: DeleteAlgorithmInput,
    ) -> RusotoFuture<(), DeleteAlgorithmError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteAlgorithm");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteAlgorithmError::from_response(response))),
                )
            }
        })
    }

    /// <p>Deletes the specified Git repository from your account.</p>
    fn delete_code_repository(
        &self,
        input: DeleteCodeRepositoryInput,
    ) -> RusotoFuture<(), DeleteCodeRepositoryError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteCodeRepository");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DeleteCodeRepositoryError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created. </p> <p>Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the <a href="http://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html">RevokeGrant</a> API call.</p>
    fn delete_endpoint(&self, input: DeleteEndpointInput) -> RusotoFuture<(), DeleteEndpointError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteEndpoint");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteEndpointError::from_response(response))),
                )
            }
        })
    }

    /// <p>Deletes an endpoint configuration. The <code>DeleteEndpointConfig</code> API deletes only the specified configuration. It does not delete endpoints created using the configuration. </p>
    fn delete_endpoint_config(
        &self,
        input: DeleteEndpointConfigInput,
    ) -> RusotoFuture<(), DeleteEndpointConfigError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteEndpointConfig");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DeleteEndpointConfigError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Deletes a model. The <code>DeleteModel</code> API deletes only the model entry that was created in Amazon SageMaker when you called the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html">CreateModel</a> API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model. </p>
    fn delete_model(&self, input: DeleteModelInput) -> RusotoFuture<(), DeleteModelError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteModel");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteModelError::from_response(response))),
                )
            }
        })
    }

    /// <p>Deletes a model package.</p> <p>A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.</p>
    fn delete_model_package(
        &self,
        input: DeleteModelPackageInput,
    ) -> RusotoFuture<(), DeleteModelPackageError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteModelPackage");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteModelPackageError::from_response(response))),
                )
            }
        })
    }

    /// <p><p> Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the <code>StopNotebookInstance</code> API. </p> <important> <p>When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance. </p> </important></p>
    fn delete_notebook_instance(
        &self,
        input: DeleteNotebookInstanceInput,
    ) -> RusotoFuture<(), DeleteNotebookInstanceError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteNotebookInstance");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DeleteNotebookInstanceError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Deletes a notebook instance lifecycle configuration.</p>
    fn delete_notebook_instance_lifecycle_config(
        &self,
        input: DeleteNotebookInstanceLifecycleConfigInput,
    ) -> RusotoFuture<(), DeleteNotebookInstanceLifecycleConfigError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "SageMaker.DeleteNotebookInstanceLifecycleConfig",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(DeleteNotebookInstanceLifecycleConfigError::from_response(
                        response,
                    ))
                }))
            }
        })
    }

    /// <p><p>Deletes the specified tags from an Amazon SageMaker resource.</p> <p>To list a resource&#39;s tags, use the <code>ListTags</code> API. </p> <note> <p>When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.</p> </note></p>
    fn delete_tags(
        &self,
        input: DeleteTagsInput,
    ) -> RusotoFuture<DeleteTagsOutput, DeleteTagsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteTags");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteTagsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteTagsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Deletes an existing work team. This operation can't be undone.</p>
    fn delete_workteam(
        &self,
        input: DeleteWorkteamRequest,
    ) -> RusotoFuture<DeleteWorkteamResponse, DeleteWorkteamError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DeleteWorkteam");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DeleteWorkteamResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DeleteWorkteamError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns a description of the specified algorithm that is in your account.</p>
    fn describe_algorithm(
        &self,
        input: DescribeAlgorithmInput,
    ) -> RusotoFuture<DescribeAlgorithmOutput, DescribeAlgorithmError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeAlgorithm");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeAlgorithmOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DescribeAlgorithmError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets details about the specified Git repository.</p>
    fn describe_code_repository(
        &self,
        input: DescribeCodeRepositoryInput,
    ) -> RusotoFuture<DescribeCodeRepositoryOutput, DescribeCodeRepositoryError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeCodeRepository");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeCodeRepositoryOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeCodeRepositoryError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Returns information about a model compilation job.</p> <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get information about multiple model compilation jobs, use <a>ListCompilationJobs</a>.</p>
    fn describe_compilation_job(
        &self,
        input: DescribeCompilationJobRequest,
    ) -> RusotoFuture<DescribeCompilationJobResponse, DescribeCompilationJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeCompilationJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeCompilationJobResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeCompilationJobError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Returns the description of an endpoint.</p>
    fn describe_endpoint(
        &self,
        input: DescribeEndpointInput,
    ) -> RusotoFuture<DescribeEndpointOutput, DescribeEndpointError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeEndpoint");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeEndpointOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DescribeEndpointError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns the description of an endpoint configuration created using the <code>CreateEndpointConfig</code> API.</p>
    fn describe_endpoint_config(
        &self,
        input: DescribeEndpointConfigInput,
    ) -> RusotoFuture<DescribeEndpointConfigOutput, DescribeEndpointConfigError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeEndpointConfig");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeEndpointConfigOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeEndpointConfigError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Gets a description of a hyperparameter tuning job.</p>
    fn describe_hyper_parameter_tuning_job(
        &self,
        input: DescribeHyperParameterTuningJobRequest,
    ) -> RusotoFuture<DescribeHyperParameterTuningJobResponse, DescribeHyperParameterTuningJobError>
    {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeHyperParameterTuningJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeHyperParameterTuningJobResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(DescribeHyperParameterTuningJobError::from_response(
                        response,
                    ))
                }))
            }
        })
    }

    /// <p>Gets information about a labeling job.</p>
    fn describe_labeling_job(
        &self,
        input: DescribeLabelingJobRequest,
    ) -> RusotoFuture<DescribeLabelingJobResponse, DescribeLabelingJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeLabelingJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeLabelingJobResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeLabelingJobError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Describes a model that you created using the <code>CreateModel</code> API.</p>
    fn describe_model(
        &self,
        input: DescribeModelInput,
    ) -> RusotoFuture<DescribeModelOutput, DescribeModelError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeModel");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeModelOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DescribeModelError::from_response(response))),
                )
            }
        })
    }

    /// <p>Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace.</p> <p>To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.</p>
    fn describe_model_package(
        &self,
        input: DescribeModelPackageInput,
    ) -> RusotoFuture<DescribeModelPackageOutput, DescribeModelPackageError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeModelPackage");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeModelPackageOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeModelPackageError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Returns information about a notebook instance.</p>
    fn describe_notebook_instance(
        &self,
        input: DescribeNotebookInstanceInput,
    ) -> RusotoFuture<DescribeNotebookInstanceOutput, DescribeNotebookInstanceError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeNotebookInstance");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeNotebookInstanceOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(DescribeNotebookInstanceError::from_response(response))
                }))
            }
        })
    }

    /// <p>Returns a description of a notebook instance lifecycle configuration.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
    fn describe_notebook_instance_lifecycle_config(
        &self,
        input: DescribeNotebookInstanceLifecycleConfigInput,
    ) -> RusotoFuture<
        DescribeNotebookInstanceLifecycleConfigOutput,
        DescribeNotebookInstanceLifecycleConfigError,
    > {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "SageMaker.DescribeNotebookInstanceLifecycleConfig",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeNotebookInstanceLifecycleConfigOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(DescribeNotebookInstanceLifecycleConfigError::from_response(
                        response,
                    ))
                }))
            }
        })
    }

    /// <p>Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.</p>
    fn describe_subscribed_workteam(
        &self,
        input: DescribeSubscribedWorkteamRequest,
    ) -> RusotoFuture<DescribeSubscribedWorkteamResponse, DescribeSubscribedWorkteamError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeSubscribedWorkteam");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeSubscribedWorkteamResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(DescribeSubscribedWorkteamError::from_response(response))
                }))
            }
        })
    }

    /// <p>Returns information about a training job.</p>
    fn describe_training_job(
        &self,
        input: DescribeTrainingJobRequest,
    ) -> RusotoFuture<DescribeTrainingJobResponse, DescribeTrainingJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeTrainingJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeTrainingJobResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeTrainingJobError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Returns information about a transform job.</p>
    fn describe_transform_job(
        &self,
        input: DescribeTransformJobRequest,
    ) -> RusotoFuture<DescribeTransformJobResponse, DescribeTransformJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeTransformJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeTransformJobResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(DescribeTransformJobError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).</p>
    fn describe_workteam(
        &self,
        input: DescribeWorkteamRequest,
    ) -> RusotoFuture<DescribeWorkteamResponse, DescribeWorkteamError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.DescribeWorkteam");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<DescribeWorkteamResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(DescribeWorkteamError::from_response(response))),
                )
            }
        })
    }

    /// <p>An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in <code>Search</code> queries. Provides suggestions for <code>HyperParameters</code>, <code>Tags</code>, and <code>Metrics</code>.</p>
    fn get_search_suggestions(
        &self,
        input: GetSearchSuggestionsRequest,
    ) -> RusotoFuture<GetSearchSuggestionsResponse, GetSearchSuggestionsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.GetSearchSuggestions");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<GetSearchSuggestionsResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(GetSearchSuggestionsError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Lists the machine learning algorithms that have been created.</p>
    fn list_algorithms(
        &self,
        input: ListAlgorithmsInput,
    ) -> RusotoFuture<ListAlgorithmsOutput, ListAlgorithmsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListAlgorithms");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListAlgorithmsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListAlgorithmsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets a list of the Git repositories in your account.</p>
    fn list_code_repositories(
        &self,
        input: ListCodeRepositoriesInput,
    ) -> RusotoFuture<ListCodeRepositoriesOutput, ListCodeRepositoriesError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListCodeRepositories");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListCodeRepositoriesOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(ListCodeRepositoriesError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Lists model compilation jobs that satisfy various filters.</p> <p>To create a model compilation job, use <a>CreateCompilationJob</a>. To get information about a particular model compilation job you have created, use <a>DescribeCompilationJob</a>.</p>
    fn list_compilation_jobs(
        &self,
        input: ListCompilationJobsRequest,
    ) -> RusotoFuture<ListCompilationJobsResponse, ListCompilationJobsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListCompilationJobs");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListCompilationJobsResponse, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(ListCompilationJobsError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Lists endpoint configurations.</p>
    fn list_endpoint_configs(
        &self,
        input: ListEndpointConfigsInput,
    ) -> RusotoFuture<ListEndpointConfigsOutput, ListEndpointConfigsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListEndpointConfigs");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListEndpointConfigsOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(ListEndpointConfigsError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Lists endpoints.</p>
    fn list_endpoints(
        &self,
        input: ListEndpointsInput,
    ) -> RusotoFuture<ListEndpointsOutput, ListEndpointsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListEndpoints");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListEndpointsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListEndpointsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets a list of <a>HyperParameterTuningJobSummary</a> objects that describe the hyperparameter tuning jobs launched in your account.</p>
    fn list_hyper_parameter_tuning_jobs(
        &self,
        input: ListHyperParameterTuningJobsRequest,
    ) -> RusotoFuture<ListHyperParameterTuningJobsResponse, ListHyperParameterTuningJobsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListHyperParameterTuningJobs");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListHyperParameterTuningJobsResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(ListHyperParameterTuningJobsError::from_response(response))
                }))
            }
        })
    }

    /// <p>Gets a list of labeling jobs.</p>
    fn list_labeling_jobs(
        &self,
        input: ListLabelingJobsRequest,
    ) -> RusotoFuture<ListLabelingJobsResponse, ListLabelingJobsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListLabelingJobs");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListLabelingJobsResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListLabelingJobsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets a list of labeling jobs assigned to a specified work team.</p>
    fn list_labeling_jobs_for_workteam(
        &self,
        input: ListLabelingJobsForWorkteamRequest,
    ) -> RusotoFuture<ListLabelingJobsForWorkteamResponse, ListLabelingJobsForWorkteamError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListLabelingJobsForWorkteam");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListLabelingJobsForWorkteamResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(ListLabelingJobsForWorkteamError::from_response(response))
                }))
            }
        })
    }

    /// <p>Lists the model packages that have been created.</p>
    fn list_model_packages(
        &self,
        input: ListModelPackagesInput,
    ) -> RusotoFuture<ListModelPackagesOutput, ListModelPackagesError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListModelPackages");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListModelPackagesOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListModelPackagesError::from_response(response))),
                )
            }
        })
    }

    /// <p>Lists models created with the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html">CreateModel</a> API.</p>
    fn list_models(
        &self,
        input: ListModelsInput,
    ) -> RusotoFuture<ListModelsOutput, ListModelsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListModels");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListModelsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListModelsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Lists notebook instance lifestyle configurations created with the <a>CreateNotebookInstanceLifecycleConfig</a> API.</p>
    fn list_notebook_instance_lifecycle_configs(
        &self,
        input: ListNotebookInstanceLifecycleConfigsInput,
    ) -> RusotoFuture<
        ListNotebookInstanceLifecycleConfigsOutput,
        ListNotebookInstanceLifecycleConfigsError,
    > {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "SageMaker.ListNotebookInstanceLifecycleConfigs",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListNotebookInstanceLifecycleConfigsOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(ListNotebookInstanceLifecycleConfigsError::from_response(
                        response,
                    ))
                }))
            }
        })
    }

    /// <p>Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region. </p>
    fn list_notebook_instances(
        &self,
        input: ListNotebookInstancesInput,
    ) -> RusotoFuture<ListNotebookInstancesOutput, ListNotebookInstancesError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListNotebookInstances");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListNotebookInstancesOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(ListNotebookInstancesError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the <code>NameContains</code> parameter.</p>
    fn list_subscribed_workteams(
        &self,
        input: ListSubscribedWorkteamsRequest,
    ) -> RusotoFuture<ListSubscribedWorkteamsResponse, ListSubscribedWorkteamsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListSubscribedWorkteams");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListSubscribedWorkteamsResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(ListSubscribedWorkteamsError::from_response(response))
                }))
            }
        })
    }

    /// <p>Returns the tags for the specified Amazon SageMaker resource.</p>
    fn list_tags(&self, input: ListTagsInput) -> RusotoFuture<ListTagsOutput, ListTagsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListTags");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response).deserialize::<ListTagsOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListTagsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Lists training jobs.</p>
    fn list_training_jobs(
        &self,
        input: ListTrainingJobsRequest,
    ) -> RusotoFuture<ListTrainingJobsResponse, ListTrainingJobsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListTrainingJobs");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListTrainingJobsResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListTrainingJobsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets a list of <a>TrainingJobSummary</a> objects that describe the training jobs that a hyperparameter tuning job launched.</p>
    fn list_training_jobs_for_hyper_parameter_tuning_job(
        &self,
        input: ListTrainingJobsForHyperParameterTuningJobRequest,
    ) -> RusotoFuture<
        ListTrainingJobsForHyperParameterTuningJobResponse,
        ListTrainingJobsForHyperParameterTuningJobError,
    > {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "SageMaker.ListTrainingJobsForHyperParameterTuningJob",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListTrainingJobsForHyperParameterTuningJobResponse, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(ListTrainingJobsForHyperParameterTuningJobError::from_response(response))
                }))
            }
        })
    }

    /// <p>Lists transform jobs.</p>
    fn list_transform_jobs(
        &self,
        input: ListTransformJobsRequest,
    ) -> RusotoFuture<ListTransformJobsResponse, ListTransformJobsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListTransformJobs");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListTransformJobsResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListTransformJobsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Gets a list of work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the <code>NameContains</code> parameter.</p>
    fn list_workteams(
        &self,
        input: ListWorkteamsRequest,
    ) -> RusotoFuture<ListWorkteamsResponse, ListWorkteamsError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.ListWorkteams");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<ListWorkteamsResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(ListWorkteamsError::from_response(response))),
                )
            }
        })
    }

    /// <p>Renders the UI template so that you can preview the worker's experience. </p>
    fn render_ui_template(
        &self,
        input: RenderUiTemplateRequest,
    ) -> RusotoFuture<RenderUiTemplateResponse, RenderUiTemplateError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.RenderUiTemplate");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<RenderUiTemplateResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(RenderUiTemplateError::from_response(response))),
                )
            }
        })
    }

    /// <p>Finds Amazon SageMaker resources that match a search query. Matching resource objects are returned as a list of <code>SearchResult</code> objects in the response. You can sort the search results by any resource property in a ascending or descending order.</p> <p>You can query against the following value types: numerical, text, Booleans, and timestamps.</p>
    fn search(&self, input: SearchRequest) -> RusotoFuture<SearchResponse, SearchError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.Search");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response).deserialize::<SearchResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(SearchError::from_response(response))),
                )
            }
        })
    }

    /// <p>Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to <code>InService</code>. A notebook instance's status must be <code>InService</code> before you can connect to your Jupyter notebook. </p>
    fn start_notebook_instance(
        &self,
        input: StartNotebookInstanceInput,
    ) -> RusotoFuture<(), StartNotebookInstanceError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.StartNotebookInstance");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(StartNotebookInstanceError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Stops a model compilation job.</p> <p> To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal.</p> <p>When it receives a <code>StopCompilationJob</code> request, Amazon SageMaker changes the <a>CompilationJobSummary$CompilationJobStatus</a> of the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the <a>CompilationJobSummary$CompilationJobStatus</a> to <code>Stopped</code>. </p>
    fn stop_compilation_job(
        &self,
        input: StopCompilationJobRequest,
    ) -> RusotoFuture<(), StopCompilationJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.StopCompilationJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(StopCompilationJobError::from_response(response))),
                )
            }
        })
    }

    /// <p>Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.</p> <p>All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the <code>Stopped</code> state, it releases all reserved resources for the tuning job.</p>
    fn stop_hyper_parameter_tuning_job(
        &self,
        input: StopHyperParameterTuningJobRequest,
    ) -> RusotoFuture<(), StopHyperParameterTuningJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.StopHyperParameterTuningJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(StopHyperParameterTuningJobError::from_response(response))
                }))
            }
        })
    }

    /// <p>Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.</p>
    fn stop_labeling_job(
        &self,
        input: StopLabelingJobRequest,
    ) -> RusotoFuture<(), StopLabelingJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.StopLabelingJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(StopLabelingJobError::from_response(response))),
                )
            }
        })
    }

    /// <p>Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call <code>StopNotebookInstance</code>.</p> <p>To access data on the ML storage volume for a notebook instance that has been terminated, call the <code>StartNotebookInstance</code> API. <code>StartNotebookInstance</code> launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work. </p>
    fn stop_notebook_instance(
        &self,
        input: StopNotebookInstanceInput,
    ) -> RusotoFuture<(), StopNotebookInstanceError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.StopNotebookInstance");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(StopNotebookInstanceError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost. </p> <p>When it receives a <code>StopTrainingJob</code> request, Amazon SageMaker changes the status of the job to <code>Stopping</code>. After Amazon SageMaker stops the job, it sets the status to <code>Stopped</code>.</p>
    fn stop_training_job(
        &self,
        input: StopTrainingJobRequest,
    ) -> RusotoFuture<(), StopTrainingJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.StopTrainingJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(StopTrainingJobError::from_response(response))),
                )
            }
        })
    }

    /// <p>Stops a transform job.</p> <p>When Amazon SageMaker receives a <code>StopTransformJob</code> request, the status of the job changes to <code>Stopping</code>. After Amazon SageMaker stops the job, the status is set to <code>Stopped</code>. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.</p>
    fn stop_transform_job(
        &self,
        input: StopTransformJobRequest,
    ) -> RusotoFuture<(), StopTransformJobError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.StopTransformJob");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(future::ok(::std::mem::drop(response)))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(StopTransformJobError::from_response(response))),
                )
            }
        })
    }

    /// <p>Updates the specified Git repository with the specified values.</p>
    fn update_code_repository(
        &self,
        input: UpdateCodeRepositoryInput,
    ) -> RusotoFuture<UpdateCodeRepositoryOutput, UpdateCodeRepositoryError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.UpdateCodeRepository");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateCodeRepositoryOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(UpdateCodeRepositoryError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p><p>Deploys the new <code>EndpointConfig</code> specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous <code>EndpointConfig</code> (there is no availability loss). </p> <p>When Amazon SageMaker receives the request, it sets the endpoint status to <code>Updating</code>. After updating the endpoint, it sets the status to <code>InService</code>. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API. </p> <note> <p>You must not delete an <code>EndpointConfig</code> in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note></p>
    fn update_endpoint(
        &self,
        input: UpdateEndpointInput,
    ) -> RusotoFuture<UpdateEndpointOutput, UpdateEndpointError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.UpdateEndpoint");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateEndpointOutput, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(UpdateEndpointError::from_response(response))),
                )
            }
        })
    }

    /// <p>Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to <code>Updating</code>. After updating the endpoint, it sets the status to <code>InService</code>. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/API_DescribeEndpoint.html">DescribeEndpoint</a> API. </p>
    fn update_endpoint_weights_and_capacities(
        &self,
        input: UpdateEndpointWeightsAndCapacitiesInput,
    ) -> RusotoFuture<
        UpdateEndpointWeightsAndCapacitiesOutput,
        UpdateEndpointWeightsAndCapacitiesError,
    > {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "SageMaker.UpdateEndpointWeightsAndCapacities",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateEndpointWeightsAndCapacitiesOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(UpdateEndpointWeightsAndCapacitiesError::from_response(
                        response,
                    ))
                }))
            }
        })
    }

    /// <p>Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.</p>
    fn update_notebook_instance(
        &self,
        input: UpdateNotebookInstanceInput,
    ) -> RusotoFuture<UpdateNotebookInstanceOutput, UpdateNotebookInstanceError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.UpdateNotebookInstance");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateNotebookInstanceOutput, _>()
                }))
            } else {
                Box::new(
                    response.buffer().from_err().and_then(|response| {
                        Err(UpdateNotebookInstanceError::from_response(response))
                    }),
                )
            }
        })
    }

    /// <p>Updates a notebook instance lifecycle configuration created with the <a>CreateNotebookInstanceLifecycleConfig</a> API.</p>
    fn update_notebook_instance_lifecycle_config(
        &self,
        input: UpdateNotebookInstanceLifecycleConfigInput,
    ) -> RusotoFuture<
        UpdateNotebookInstanceLifecycleConfigOutput,
        UpdateNotebookInstanceLifecycleConfigError,
    > {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header(
            "x-amz-target",
            "SageMaker.UpdateNotebookInstanceLifecycleConfig",
        );
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateNotebookInstanceLifecycleConfigOutput, _>()
                }))
            } else {
                Box::new(response.buffer().from_err().and_then(|response| {
                    Err(UpdateNotebookInstanceLifecycleConfigError::from_response(
                        response,
                    ))
                }))
            }
        })
    }

    /// <p>Updates an existing work team with new member definitions or description.</p>
    fn update_workteam(
        &self,
        input: UpdateWorkteamRequest,
    ) -> RusotoFuture<UpdateWorkteamResponse, UpdateWorkteamError> {
        let mut request = SignedRequest::new("POST", "sagemaker", &self.region, "/");
        request.set_endpoint_prefix("api.sagemaker".to_string());
        request.set_content_type("application/x-amz-json-1.1".to_owned());
        request.add_header("x-amz-target", "SageMaker.UpdateWorkteam");
        let encoded = serde_json::to_string(&input).unwrap();
        request.set_payload(Some(encoded));

        self.client.sign_and_dispatch(request, |response| {
            if response.status.is_success() {
                Box::new(response.buffer().from_err().and_then(|response| {
                    proto::json::ResponsePayload::new(&response)
                        .deserialize::<UpdateWorkteamResponse, _>()
                }))
            } else {
                Box::new(
                    response
                        .buffer()
                        .from_err()
                        .and_then(|response| Err(UpdateWorkteamError::from_response(response))),
                )
            }
        })
    }
}