[−][src]Struct rusoto_machinelearning::CreateDataSourceFromRedshiftInput
Fields
compute_statistics: Option<bool>The compute statistics for a DataSource. The statistics are generated from the observation data referenced by a DataSource. Amazon ML uses the statistics internally during MLModel training. This parameter must be set to true if the DataSource needs to be used for MLModel training.
data_source_id: StringA user-supplied ID that uniquely identifies the DataSource.
data_source_name: Option<String>A user-supplied name or description of the DataSource.
data_spec: RedshiftDataSpecThe data specification of an Amazon Redshift DataSource:
DatabaseInformation -
-
DatabaseName- The name of the Amazon Redshift database. -
ClusterIdentifier- The unique ID for the Amazon Redshift cluster.
-
DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.
SelectSqlQuery - The query that is used to retrieve the observation data for the
Datasource.S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location for staging Amazon Redshift data. The data retrieved from Amazon Redshift using the
SelectSqlQueryquery is stored in this location.DataSchemaUri - The Amazon S3 location of the
DataSchema.DataSchema - A JSON string representing the schema. This is not required if
DataSchemaUriis specified.-
DataRearrangement - A JSON string that represents the splitting and rearrangement requirements for the
DataSource.Sample -
"{"splitting":{"percentBegin":10,"percentEnd":60}}"
role_arn: StringA fully specified role Amazon Resource Name (ARN). Amazon ML assumes the role on behalf of the user to create the following:
A security group to allow Amazon ML to execute the
SelectSqlQueryquery on an Amazon Redshift clusterAn Amazon S3 bucket policy to grant Amazon ML read/write permissions on the
S3StagingLocation
Trait Implementations
impl PartialEq<CreateDataSourceFromRedshiftInput> for CreateDataSourceFromRedshiftInput[src]
fn eq(&self, other: &CreateDataSourceFromRedshiftInput) -> bool[src]
fn ne(&self, other: &CreateDataSourceFromRedshiftInput) -> bool[src]
impl Default for CreateDataSourceFromRedshiftInput[src]
impl Clone for CreateDataSourceFromRedshiftInput[src]
fn clone(&self) -> CreateDataSourceFromRedshiftInput[src]
fn clone_from(&mut self, source: &Self)1.0.0[src]
Performs copy-assignment from source. Read more
impl Debug for CreateDataSourceFromRedshiftInput[src]
impl Serialize for CreateDataSourceFromRedshiftInput[src]
Auto Trait Implementations
impl Send for CreateDataSourceFromRedshiftInput
impl Sync for CreateDataSourceFromRedshiftInput
Blanket Implementations
impl<T> From for T[src]
impl<T, U> Into for T where
U: From<T>, [src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
impl<T, U> TryFrom for T where
T: From<U>, [src]
T: From<U>,
type Error = !
try_from)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T> Borrow for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut for T where
T: ?Sized, [src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T[src]
impl<T, U> TryInto for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
try_from)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
fn get_type_id(&self) -> TypeId[src]
impl<T> Erased for T
impl<T> Same for T
type Output = T
Should always be Self