[][src]Struct rusoto_machinelearning::MLModel

pub struct MLModel {
    pub algorithm: Option<String>,
    pub compute_time: Option<i64>,
    pub created_at: Option<f64>,
    pub created_by_iam_user: Option<String>,
    pub endpoint_info: Option<RealtimeEndpointInfo>,
    pub finished_at: Option<f64>,
    pub input_data_location_s3: Option<String>,
    pub last_updated_at: Option<f64>,
    pub ml_model_id: Option<String>,
    pub ml_model_type: Option<String>,
    pub message: Option<String>,
    pub name: Option<String>,
    pub score_threshold: Option<f32>,
    pub score_threshold_last_updated_at: Option<f64>,
    pub size_in_bytes: Option<i64>,
    pub started_at: Option<f64>,
    pub status: Option<String>,
    pub training_data_source_id: Option<String>,
    pub training_parameters: Option<HashMap<String, String>>,
}

Represents the output of a GetMLModel operation.

The content consists of the detailed metadata and the current status of the MLModel.

Fields

algorithm: Option<String>

The algorithm used to train the MLModel. The following algorithm is supported:

compute_time: Option<i64>created_at: Option<f64>

The time that the MLModel was created. The time is expressed in epoch time.

created_by_iam_user: Option<String>

The AWS user account from which the MLModel was created. The account type can be either an AWS root account or an AWS Identity and Access Management (IAM) user account.

endpoint_info: Option<RealtimeEndpointInfo>

The current endpoint of the MLModel.

finished_at: Option<f64>input_data_location_s3: Option<String>

The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).

last_updated_at: Option<f64>

The time of the most recent edit to the MLModel. The time is expressed in epoch time.

ml_model_id: Option<String>

The ID assigned to the MLModel at creation.

ml_model_type: Option<String>

Identifies the MLModel category. The following are the available types:

message: Option<String>

A description of the most recent details about accessing the MLModel.

name: Option<String>

A user-supplied name or description of the MLModel.

score_threshold: Option<f32>score_threshold_last_updated_at: Option<f64>

The time of the most recent edit to the ScoreThreshold. The time is expressed in epoch time.

size_in_bytes: Option<i64>started_at: Option<f64>status: Option<String>

The current status of an MLModel. This element can have one of the following values:

training_data_source_id: Option<String>

The ID of the training DataSource. The CreateMLModel operation uses the TrainingDataSourceId.

training_parameters: Option<HashMap<String, String>>

A list of the training parameters in the MLModel. The list is implemented as a map of key-value pairs.

The following is the current set of training parameters:

Trait Implementations

impl PartialEq<MLModel> for MLModel[src]

impl Default for MLModel[src]

impl Clone for MLModel[src]

fn clone_from(&mut self, source: &Self)
1.0.0
[src]

Performs copy-assignment from source. Read more

impl Debug for MLModel[src]

impl<'de> Deserialize<'de> for MLModel[src]

Auto Trait Implementations

impl Send for MLModel

impl Sync for MLModel

Blanket Implementations

impl<T> From for T[src]

impl<T, U> Into for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

impl<T, U> TryFrom for T where
    T: From<U>, 
[src]

type Error = !

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> Borrow for T where
    T: ?Sized
[src]

impl<T> BorrowMut for T where
    T: ?Sized
[src]

impl<T, U> TryInto for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> DeserializeOwned for T where
    T: Deserialize<'de>, 
[src]

impl<T> Erased for T

impl<T> Same for T

type Output = T

Should always be Self