[−][src]Struct rusoto_machinelearning::RedshiftDataSpec
Describes the data specification of an Amazon Redshift DataSource
.
Fields
data_rearrangement: Option<String>
A JSON string that represents the splitting and rearrangement processing to be applied to a DataSource
. If the DataRearrangement
parameter is not provided, all of the input data is used to create the Datasource
.
There are multiple parameters that control what data is used to create a datasource:
percentBegin
Use
percentBegin
to indicate the beginning of the range of the data used to create the Datasource. If you do not includepercentBegin
andpercentEnd
, Amazon ML includes all of the data when creating the datasource.percentEnd
Use
percentEnd
to indicate the end of the range of the data used to create the Datasource. If you do not includepercentBegin
andpercentEnd
, Amazon ML includes all of the data when creating the datasource.complement
The
complement
parameter instructs Amazon ML to use the data that is not included in the range ofpercentBegin
topercentEnd
to create a datasource. Thecomplement
parameter is useful if you need to create complementary datasources for training and evaluation. To create a complementary datasource, use the same values forpercentBegin
andpercentEnd
, along with thecomplement
parameter.For example, the following two datasources do not share any data, and can be used to train and evaluate a model. The first datasource has 25 percent of the data, and the second one has 75 percent of the data.
Datasource for evaluation:
{"splitting":{"percentBegin":0, "percentEnd":25}}
Datasource for training:
{"splitting":{"percentBegin":0, "percentEnd":25, "complement":"true"}}
strategy
To change how Amazon ML splits the data for a datasource, use the
strategy
parameter.The default value for the
strategy
parameter issequential
, meaning that Amazon ML takes all of the data records between thepercentBegin
andpercentEnd
parameters for the datasource, in the order that the records appear in the input data.The following two
DataRearrangement
lines are examples of sequentially ordered training and evaluation datasources:Datasource for evaluation:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential"}}
Datasource for training:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"sequential", "complement":"true"}}
To randomly split the input data into the proportions indicated by the percentBegin and percentEnd parameters, set the
strategy
parameter torandom
and provide a string that is used as the seed value for the random data splitting (for example, you can use the S3 path to your data as the random seed string). If you choose the random split strategy, Amazon ML assigns each row of data a pseudo-random number between 0 and 100, and then selects the rows that have an assigned number betweenpercentBegin
andpercentEnd
. Pseudo-random numbers are assigned using both the input seed string value and the byte offset as a seed, so changing the data results in a different split. Any existing ordering is preserved. The random splitting strategy ensures that variables in the training and evaluation data are distributed similarly. It is useful in the cases where the input data may have an implicit sort order, which would otherwise result in training and evaluation datasources containing non-similar data records.The following two
DataRearrangement
lines are examples of non-sequentially ordered training and evaluation datasources:Datasource for evaluation:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://mys3path/bucket/file.csv"}}
Datasource for training:
{"splitting":{"percentBegin":70, "percentEnd":100, "strategy":"random", "randomSeed"="s3://mys3path/bucket/file.csv", "complement":"true"}}
data_schema: Option<String>
A JSON string that represents the schema for an Amazon Redshift DataSource
. The DataSchema
defines the structure of the observation data in the data file(s) referenced in the DataSource
.
A DataSchema
is not required if you specify a DataSchemaUri
.
Define your DataSchema
as a series of key-value pairs. attributes
and excludedVariableNames
have an array of key-value pairs for their value. Use the following format to define your DataSchema
.
{ "version": "1.0",
"recordAnnotationFieldName": "F1",
"recordWeightFieldName": "F2",
"targetFieldName": "F3",
"dataFormat": "CSV",
"dataFileContainsHeader": true,
"attributes": [
{ "fieldName": "F1", "fieldType": "TEXT" }, { "fieldName": "F2", "fieldType": "NUMERIC" }, { "fieldName": "F3", "fieldType": "CATEGORICAL" }, { "fieldName": "F4", "fieldType": "NUMERIC" }, { "fieldName": "F5", "fieldType": "CATEGORICAL" }, { "fieldName": "F6", "fieldType": "TEXT" }, { "fieldName": "F7", "fieldType": "WEIGHTED_INT_SEQUENCE" }, { "fieldName": "F8", "fieldType": "WEIGHTED_STRING_SEQUENCE" } ],
"excludedVariableNames": [ "F6" ] }
data_schema_uri: Option<String>
Describes the schema location for an Amazon Redshift DataSource
.
database_credentials: RedshiftDatabaseCredentials
Describes AWS Identity and Access Management (IAM) credentials that are used connect to the Amazon Redshift database.
database_information: RedshiftDatabase
Describes the DatabaseName
and ClusterIdentifier
for an Amazon Redshift DataSource
.
s3_staging_location: String
Describes an Amazon S3 location to store the result set of the SelectSqlQuery
query.
select_sql_query: String
Describes the SQL Query to execute on an Amazon Redshift database for an Amazon Redshift DataSource
.
Trait Implementations
impl PartialEq<RedshiftDataSpec> for RedshiftDataSpec
[src]
fn eq(&self, other: &RedshiftDataSpec) -> bool
[src]
fn ne(&self, other: &RedshiftDataSpec) -> bool
[src]
impl Default for RedshiftDataSpec
[src]
fn default() -> RedshiftDataSpec
[src]
impl Clone for RedshiftDataSpec
[src]
fn clone(&self) -> RedshiftDataSpec
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl Debug for RedshiftDataSpec
[src]
impl Serialize for RedshiftDataSpec
[src]
Auto Trait Implementations
impl Send for RedshiftDataSpec
impl Sync for RedshiftDataSpec
Blanket Implementations
impl<T> From for T
[src]
impl<T, U> Into for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
impl<T, U> TryFrom for T where
T: From<U>,
[src]
T: From<U>,
type Error = !
try_from
)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T> Borrow for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T, U> TryInto for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
try_from
)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
fn get_type_id(&self) -> TypeId
[src]
impl<T> Erased for T
impl<T> Same for T
type Output = T
Should always be Self