[−][src]Struct rusoto_sagemaker::InputConfig
Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
Fields
data_input_config: String
Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.
-
TensorFlow
: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.-
Examples for one input:
-
If using the console,
{"input":[1,1024,1024,3]}
-
If using the CLI,
{"input":[1,1024,1024,3]}
-
-
Examples for two inputs:
-
If using the console,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}
-
If using the CLI,
{"data1": [1,28,28,1], "data2":[1,28,28,1]}
-
-
-
MXNET/ONNX
: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.-
Examples for one input:
-
If using the console,
{"data":[1,3,1024,1024]}
-
If using the CLI,
{"data":[1,3,1024,1024]}
-
-
Examples for two inputs:
-
If using the console,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}
-
If using the CLI,
{"var1": [1,1,28,28], "var2":[1,1,28,28]}
-
-
-
PyTorch
: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.-
Examples for one input in dictionary format:
-
If using the console,
{"input0":[1,3,224,224]}
-
If using the CLI,
{"input0":[1,3,224,224]}
-
-
Example for one input in list format:
[[1,3,224,224]]
-
Examples for two inputs in dictionary format:
-
If using the console,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}
-
If using the CLI,
{"input0":[1,3,224,224], "input1":[1,3,224,224]}
-
-
Example for two inputs in list format:
[[1,3,224,224], [1,3,224,224]]
-
-
XGBOOST
: input data name and shape are not needed.
framework: String
Identifies the framework in which the model was trained. For example: TENSORFLOW.
s3_uri: String
The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
Trait Implementations
impl PartialEq<InputConfig> for InputConfig
[src]
fn eq(&self, other: &InputConfig) -> bool
[src]
fn ne(&self, other: &InputConfig) -> bool
[src]
impl Default for InputConfig
[src]
fn default() -> InputConfig
[src]
impl Clone for InputConfig
[src]
fn clone(&self) -> InputConfig
[src]
fn clone_from(&mut self, source: &Self)
1.0.0[src]
Performs copy-assignment from source
. Read more
impl Debug for InputConfig
[src]
impl Serialize for InputConfig
[src]
fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error> where
__S: Serializer,
[src]
__S: Serializer,
impl<'de> Deserialize<'de> for InputConfig
[src]
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error> where
__D: Deserializer<'de>,
[src]
__D: Deserializer<'de>,
Auto Trait Implementations
impl Send for InputConfig
impl Sync for InputConfig
Blanket Implementations
impl<T> From for T
[src]
impl<T, U> Into for T where
U: From<T>,
[src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
impl<T, U> TryFrom for T where
T: From<U>,
[src]
T: From<U>,
type Error = !
try_from
)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T> Borrow for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T, U> TryInto for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
try_from
)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
fn get_type_id(&self) -> TypeId
[src]
impl<T> DeserializeOwned for T where
T: Deserialize<'de>,
[src]
T: Deserialize<'de>,
impl<T> Erased for T
impl<T> Same for T
type Output = T
Should always be Self